

The Chinese HXMT Mission: the OAS Bologna/Uni Ferrara involvement

Mauro Orlandini

on behalf of the Bologna/Ferrara HXMT group

Rev: 0.2 (2018/12/05)

OAS Bologna OAS Days 18/12/2018

The HXMT Mission

PDS/HE Analogies

The Collaboration

HXMT Core Science

HXMT Imaging

Scientific Results

Data Policy

HXMT Core Science Groups

The Analysis Software

The Italian HXMT Team

Bologna	Ferrara					
Mauro Orlandini	Piero Rosati					
Filippo Frontera	Filippo Frontera					
John Stephen	Cristiano Guidorzi					
Lorenzo Amati	Enrico Virgilli					
Nicola Masetti						
Eliana Palazzi						
Luciano Nicastro						
Loredana Bassani						
Angela Malizia						
Vito Sguera						

The Italian HXMT Team

The HXMT Mission
PDS/HE Analogies
The Collaboration
HXMT Core Science
HXMT Imaging
Scientific Results
Data Policy
HXMT Core Science Groups
The Analysis Software

HXMT Meeting in Beijing (April 10–13, 2018)

The HXMT Mission

PDS/HE Analogies

The Collaboration

HXMT Core Science

HXMT Imaging

Scientific Results

Data Policy

HXMT Core Science Groups

The Analysis Software

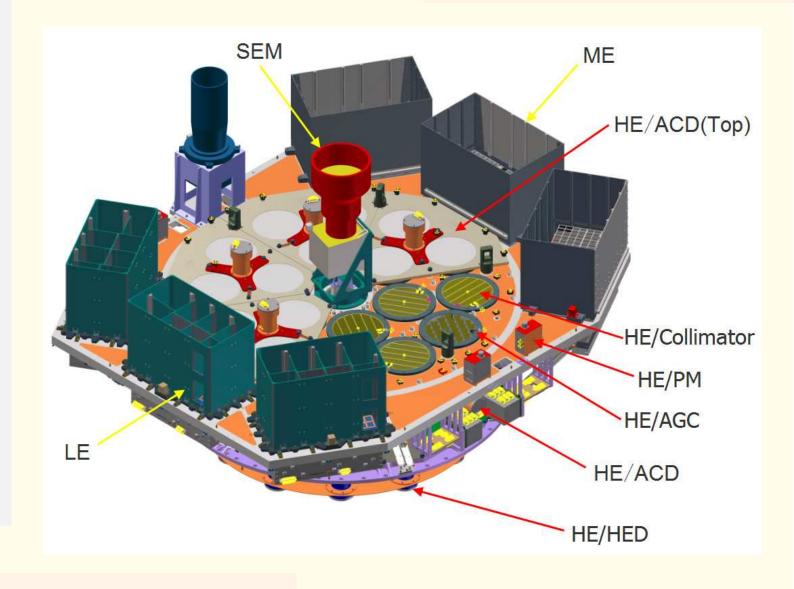
Long March 4B rocket carrying the Hard X-ray Modulation Telescope (HXMT) blasts off from Jiuquan Satellite Launch Center on June 15, 2017.

The HXMT Mission

PDS/HE Analogies

The Collaboration

HXMT Core Science


HXMT Imaging

Scientific Results

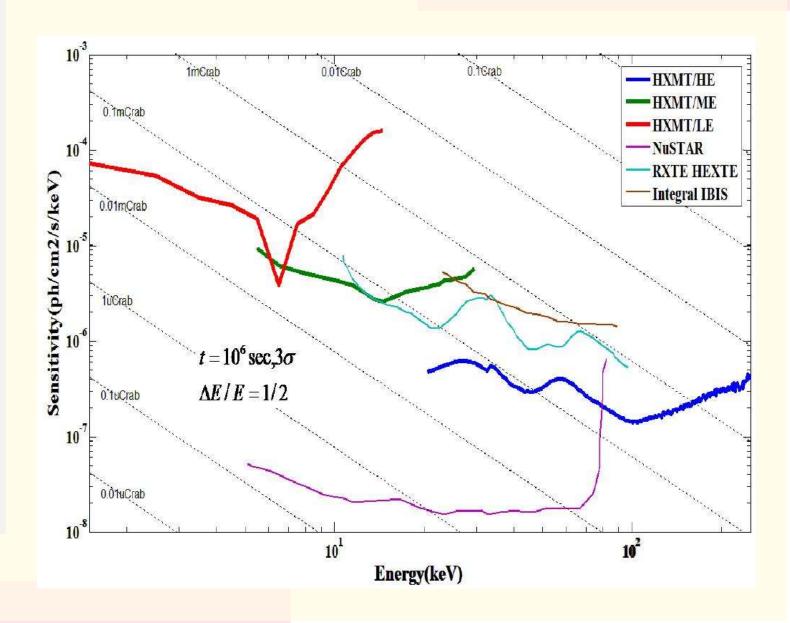
Data Policy

HXMT Core Science Groups

The Analysis Software

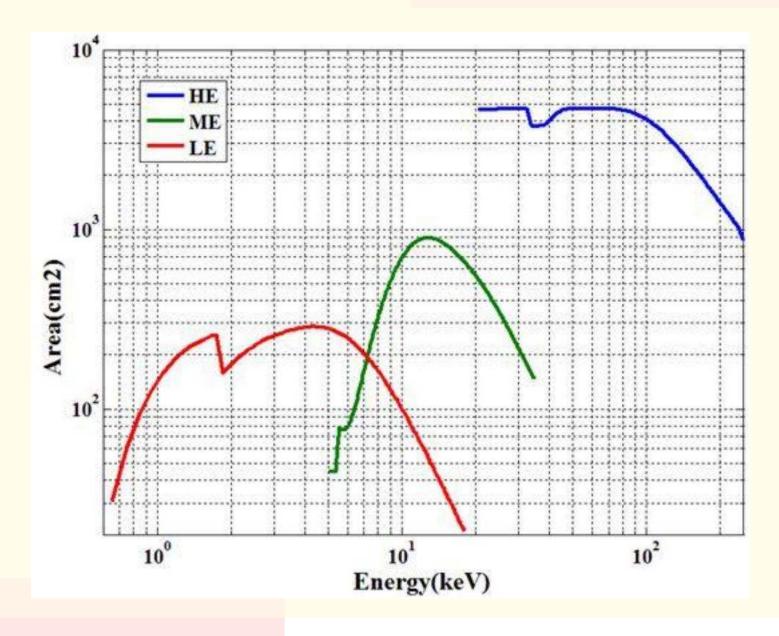
The HXMT Mission

PDS/HE Analogies
The Collaboration
HXMT Core Science
HXMT Imaging
Scientific Results
Data Policy
HXMT Core Science Groups
The Analysis Software


LE: SCD, 384 cm ²					
ME : Si-PIN, 952 cm ²					
HE : NaI/CsI, 5000 cm ²					
LE: 1-15 keV					
ME: 5-30 keV					
HE: 20-250 keV					
HE: 25 μ s					
ME: 280 μ s					
LE: 1 ms					
LE: 2.5% @ 6 keV					
ME: 14% @ 20 keV					
HE: 19% @ 60 keV					
LE: 6°x1.6°; 6°x4°,60°x3°,blind					
ME: 4°x1°, 4°x4°,blind					
HE: 5.7°x1.1°,5.7°x5.7°,blind					
< 5'					
<1'					
0.5 mCrab (only statistical uncertainties					
included)					
Altitude: ~550 km					
Inclination: ~43°					
Three-axis stabilized					
Control precision: 0.1°					
Measurement accuracy: 0.01°					
LE: 3 Mbps					
ME: 3 Mbps					
HE: 300 kbps					
~1000 kg					
4 years					
Scan, pointing, GRB					

The HXMT Mission

PDS/HE Analogies
The Collaboration
HXMT Core Science
HXMT Imaging
Scientific Results
Data Policy
HXMT Core Science Groups
The Analysis Software

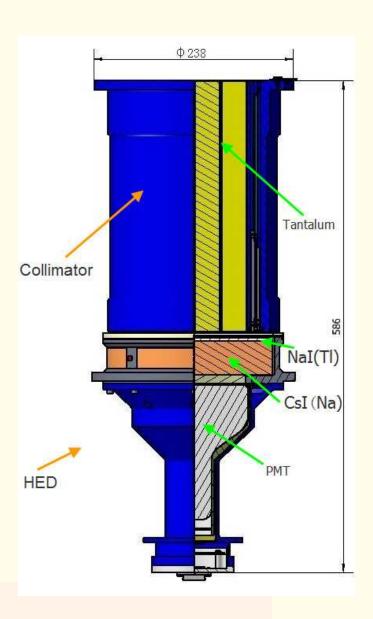


The HXMT Mission

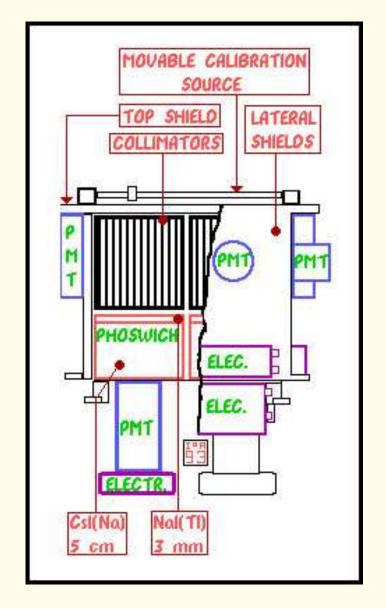
PDS/HE Analogies
The Collaboration
HXMT Core Science
HXMT Imaging
Scientific Results
Data Policy

HXMT Core Science Groups

The Analysis Software



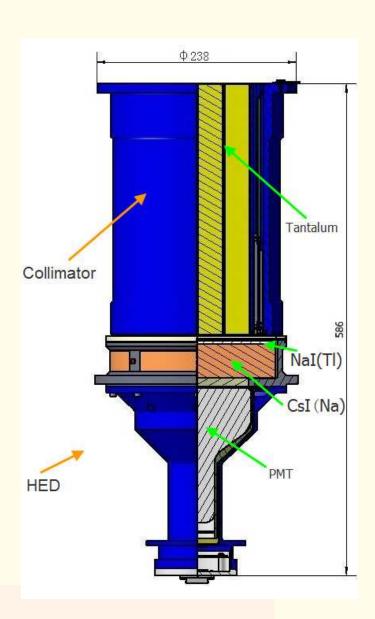
The Italian HXMT Team
The HXMT Mission


PDS/HE Analogies

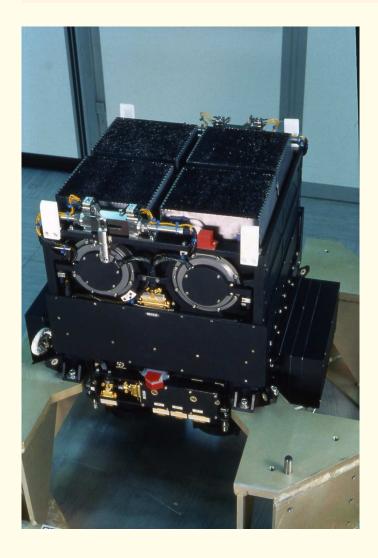
The Collaboration
HXMT Core Science
HXMT Imaging
Scientific Results

Data Policy
HXMT Core Science Groups
The Analysis Software

PDS/HE Analogies



The Italian HXMT Team
The HXMT Mission


PDS/HE Analogies

The Collaboration
HXMT Core Science
HXMT Imaging
Scientific Results
Data Policy
HXMT Core Science Groups

The Analysis Software

PDS/HE Analogies

The Italian HXMT Team
The HXMT Mission
PDS/HE Analogies

The Collaboration

HXMT Core Science
HXMT Imaging
Scientific Results
Data Policy
HXMT Core Science Groups
The Analysis Software

The Collaboration

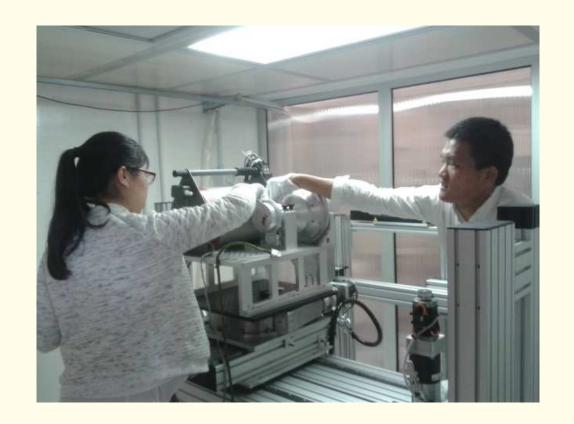
Because of the analogies of the HE instrument aboard HXMT and the PDS experiment aboard BeppoSAX, we were contacted by the Chinese team in 2002 for a possible collaboration. Approved proposals:

Chinese—Italian Cooperation in X-ray Astronomy on Mobility (MEF). 2002

A polarimeter for the HXMT Mission (ASI). 2006

Calibration of HE Modules at the LARIX Facility in Ferrara (ASI). 2015

Scientific Exploitation of Data from the Chinese Insight-HXMT Mission (ASI). 2017


The Italian HXMT Team
The HXMT Mission
PDS/HE Analogies

The Collaboration

HXMT Core Science
HXMT Imaging
Scientific Results
Data Policy
HXMT Core Science Groups
The Analysis Software

The Collaboration

The HE/HXMT Module calibrations at the LARIX facility at the Ferrara University Physics Department (5–15 October 2015):

The Italian HXMT Team
The HXMT Mission
PDS/HE Analogies
The Collaboration

HXMT Core Science

HXMT Imaging
Scientific Results
Data Policy
HXMT Core Science Groups
The Analysis Software

HXMT Core Science

Scan of the Galactic Plane:

looking at new transient sources and monitoring of known variable sources;

Pointing observations of X-ray binaries:

broad band spectral studies and temporal studies, for exploring emission mechanisms in strong gravitational and magnetic fields;

Observations of Gamma-Ray Bursts (GRBs)

The Italian HXMT Team
The HXMT Mission
PDS/HE Analogies
The Collaboration
HXMT Core Science

HXMT Imaging

Scientific Results

Data Policy

HXMT Core Science Groups

The Analysis Software

HXMT Imaging

All the detectors aboard HXMT have not imaging capability. The imaging is obtained *post-facto* by combining the counts observed from units with different collimator direction. The technique is called **Direct Demodulation**.

The Italian HXMT Team
The HXMT Mission
PDS/HE Analogies
The Collaboration
HXMT Core Science

HXMT Imaging

Scientific Results
Data Policy
HXMT Core Science Groups
The Analysis Software

HXMT Imaging

Astronomy & Astrophysics manuscript no. syndd September 5, 2018 ©ESO 2018

Synthetic direct demodulation method and its applications in Insight-HXMT data analysis *

Zhuoxi Huo^{1,4} and Yang Zhang^{2,3,4}

- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China e-mail: huozhuoxi@qxslab.cn
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany e-mail: yzhang@cpfs.mpg.de
- ³ Leibniz Institute for Solid State and Materials Research, IFW Dresden, 01069 Dresden, Germany
- ⁴ Tsinghua Center for Astrophysics, Department of Physics, Tsinghua University, Beijing 100084, China

September 5, 2018

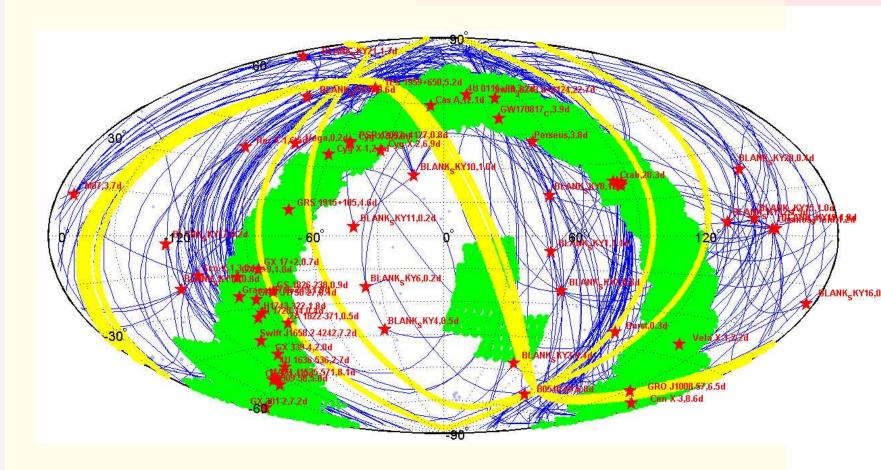
ABSTRACT

Aims. A modulation equation relates the observed data to the object where the observation is approximated by a linear system. Reconstructing the object from the observed data is therefore is equivalent to solving the modulation equation. In this work we present the synthetic direct demodulation (synDD) method to reduce the dimensionality of a general modulation equation and solve the equation in its sparse representation.

Methods. A principal component analysis is used to reduce the dimensionality of the kernel matrix and k-means clustering is applied to its sparse representation in order to decompose the kernel matrix into a weighted sum of a series of circulant matrices. The matrix-vector and matrix-matrix multiplication complexities are therefore reduced from polynomial time to linear-logarithmic time. A general statistical solution of the modulation equation in sparse representation is derived. Several data-analysis pipelines are designed for the Hard X-ray modulation Telescope (Insight-HXMT) based on the synDD method.

Results. In this approach, a large set of data originating from the same object but sampled irregularly and/or observed with different instruments in multiple epochs can be reduced simultaneously in a synthetic observation model. We suggest using the proposed synDD method in *Insight*-HXMT data analysis especially for the detection of X-ray transients and monitoring time-varying objects with scanning observations.

Key words. methods: data analysis - methods: numerical - techniques: image processing - x-rays: general



The Italian HXMT Team
The HXMT Mission
PDS/HE Analogies
The Collaboration
HXMT Core Science
HXMT Imaging

Scientific Results

Data Policy HXMT Core Science Groups The Analysis Software

Scientific Results

The Italian HXMT Team
The HXMT Mission
PDS/HE Analogies
The Collaboration
HXMT Core Science
HXMT Imaging

Scientific Results

Data Policy HXMT Core Science Groups The Analysis Software

Scientific Results

	Ins	sight	-HXMT	Observat			ons	s (ti	ll 2018.5.31)		
	Mode	Туре	Source Name	Obs. Frequency	Obs. Time		Mode	Туре	Source Name	Obs. Frequency	Obs. Time (ks)
				requericy	(NO)	2.3			GX9+9	4	80
		SNR	Cas A	9	530	2.4			GX 13+1	1	30
2			Crab	86	1530	215			GX 17+2	9	210
			PSR B0540-69	7	250	276			Her X-1	12	380
		Pulsar	PSR B0540-09	I	250	27			Sco X-1	6	180
			PSR B1509-58	12	310	211			Vela X-1	1	120
- 5			Cyg X-1	12	270		1		2A 1822-371 4U 1728-34	4	30 90
				100000		N17	4		4U 0115+63	11	150
- 6			Granat 1716-249	2	250			NS Binary	4U1636-536	19	200
7	Point	DI I Dia va	GRS 1915+105	24	720	33			PSR J2032+4127	4	40
8			GX 339-4	1	100				NGC 6624	1	30
			H 1743-322	15	180		Dailet		H 1417-624	21	210
		BH Binary	MAXI J1535-571	18	430		Point				
11			MAXI J1543-564	1	80				IGR J16328-4726	2	20
12		5	MAXI J1820+070	61	1360	3.7			Swift J1756.9- 2508	1	40
13			Swift J1658.2-4242	23	470	38		TBD	Swift J0243.6+6124	97	1200
14		NS Binary	Aql X-1	3	30	39		Extra-	1ES 1959+650	25	255
15			Cen X-3	14	400	-	4		Perseus	2	200
16	6 7 8 9		Cir X-1	6	100	40					
17			Cyg X-2	22 15	540	4.1		3	M87	4	180
10			Cyg X-3	254.084	390	42			Cosmos Field	4	80
			GRO J1008-57	11	340			BlankSky	21	84	840
20			GRO1750-27	1	15	4.5	Small	Crab Area		9	550
21			GS 1826-238	1	40		Area Scan	Galactic		224	0000
22			GX 301-2	15	400		(SAS)	Plane	22 regions	324	3600

The Italian HXMT Team
The HXMT Mission
PDS/HE Analogies
The Collaboration
HXMT Core Science
HXMT Imaging

Scientific Results

Data Policy
HXMT Core Science Groups
The Analysis Software

Scientific Results

#	Bibcode Authors	Score Title	Date		of Links	trol Help			
1	□ 2018ApJ866122H Huang, Y.; Qu, J. L.; Zhang, S. N.; Bu, Q. C.; Chen, Y. P.; Tao, L.; Zhang, S.; Lu, F. J.; Li, T. P.; Song, L. M.; and 114 coauthors	1.000 INSIGHT-H	10/2018 XMT Observation:	A s of th	E F ne New Bl	X ack Hole Ca	R C ndidate MAXI	S J1535-57	U '1: Timing Analysis
2	□ 2018ApJ864L30C Chen, Y. P.; Zhang, S.; Qu, J. L.; Zhang, S. N.; Ji, L.; Kong, L. D.; Cao, X. L.; Chang, Z.; Chen, G.; Chen, L.; and 102 coauthors	1.000 Insight-HXN	09/2018 IT Observations (A of 4U	E F 1636-536	: Corona Co	R C poling Reveale	S ed with Si	U ngle Short Type-I X-Ray Burst
3	□ 2018cosp42E3443T Tuo, Youli; Zhang, Yue	1.000 The Insight	07/2018 -HXMT observatio	A on of	the newly	discovered	transient X-ra	ay pulsar	U Swift J0243.6+6124
4	□ 2018ATel117991H Huang, Yue; Liao, Jinyuan; Ge, Mingyu; Xiong, Shaolin; Zhang, Shu; Qu, Jinlu; Lu, Fangjun; Song, Lingming; Zhang, Shuangnan; Insight-HXMT Collaboration		06/2018 : Insight-HXMT/H	A IE dat	E a search				U
5	☐ 2018SCPMA61c1011L Li, TiPei; Xiong, ShaoLin; Zhang, ShuangNan; Lu, FangJun; Song, LiMing; Cao, XueLei; Chang, Zhi; Chen, Gang; Chen, Li; Chen, TianXiang; and 100 coauthors	1.000 Insight-HXN	03/2018 IT observations o	A of the	E first bina	X ry neutron s	R C tar merger G	W170817	U
6	☐ 2017ATel109071G Ge, Mingyu; Zhang, ShuangNan; Lu, FangJun; Zhang, Shu; Weng, Shanshan; Xiong, Shaolin; Liu, Yuan; Song, Liming; HXMT-Collaboration	1.000 Orbital ephe	10/2017 emeris of Swift 0:	A 243.6	E +6124 es	timated join	CONTRACT ACCOUNTS MADE AND ADDRESS.	S ht-HXMT a	U and Fermi/GBM
7	☐ 2017ATel106531C Chen, Y.; Chen, Y. P.; Liao, J. Y.; Li, C. K.; Ge, M. Y.; Guan, J.; Liu, Y.; Li, T. P.; Lu, F. J.; Song, L. M.; and 5 coauthors	1.000 IGR J17329	08/2017 -2731: Insight-H	A XMT (<mark>E</mark> observatio	on			

... and 41 GCN.

The Italian HXMT Team
The HXMT Mission
PDS/HE Analogies
The Collaboration
HXMT Core Science
HXMT Imaging
Scientific Results

Data Policy

HXMT Core Science Groups
The Analysis Software

There are two major research programs:

HXMT Core Science Program

Data shared within the Core Science Team, composed by

- Hardware Institute Members;
- 2. Domestic key scientists;
- International scientists who have either made valuable contribution to HXMT project or recommended by cooperating organizations;

HXMT Guest Observer Program

Users (both domestic and foreign) propose observations not included in the Core Science Program.

http://www.hxmt.org/index.php/2013-03-22-08-08-48/docs/319-hxmt-data-polocy-of-hxmt

The Italian HXMT Team
The HXMT Mission
PDS/HE Analogies
The Collaboration
HXMT Core Science
HXMT Imaging
Scientific Results

HXMT Core Science Groups

The Analysis Software

Data Policy

HXMT Core Science Groups

Group 1: Accreting X-ray binaries

leaders: Qu Jin Lu (qujl@ihep.ac.cn), Zhang Shu (szhang@ihep.ac.cn)

Group 2: Galactic survey and diffuse emission research

leader: Liu Yuan (liuyuan@ihep.ac.cn)

Group 3: Multi-wavelength observations

leader: Liu JiFeng (jfliu@nao.cas.cn)

Group 4: Calibration and background model

leader: Song LiMing (songlm@ihep.ac.cn)

Group 5: Pulsar navigation

leader: Zheng Shi Jie (zhengsj@ihep.ac.cn)

Group 6: Extragalactic sources

leader: Yuan Wei Min (wmy@nao.cas.cn)

Group 7: Gamma-ray bursts and gravitational wave EM counterparts

leader: Xiong Shao Lin (xiongsl@ihep.ac.cn)

Group 8: Non-accreting pulsars

leader: Zhang Shuang Nan (zhangsn@ihep.ac.cn)

The Italian HXMT Team
The HXMT Mission
PDS/HE Analogies
The Collaboration
HXMT Core Science
HXMT Imaging
Scientific Results
Data Policy

The Analysis Software

HXMT Core Science Groups

The Analysis Software

In January 2019 Ji Long, a postdoc at Tuebingen, will be in Ferrara for two weeks, to show how to analyze HXMT data.

The HXMTDAS package, part of the standard HEASOFT software, is actually at its release 2.0, available at

http://www.uu-world.cn/hxmt/hxmtsoft/index2.html

The HXMT Mission

PDS/HE Analogies

The Collaboration

HXMT Core Science

HXMT Imaging

Scientific Results

Data Policy

HXMT Core Science Groups

The Analysis Software

