Previsioni. Temperature nel mondo: valori in calo nei prossimi 10 anni.

Studio termico e criogenico di strumentazione astrofisica (e non solo): un'attività scientifica, sperimentale, tecnologica inter-spettrale e multi-piattaforma

Gianluca Morgante, Luca Terenzi

What we do

- Thermal design of space, balloon-borne and ground based scientific instrumentation
- Design, development, testing and operation of cryogenic thermal control systems and test facilities
- Study, characterization and analysis/removal of thermal systematic effects on scientific observations
- Measurement of thermo-physical properties of materials at low temperatures

What we use – Software tools

- Thermal modeling with the most common packages required by space agenices:
 - ESATAN Thermal Modeling Suite
 - SINDA /FLUINT
 - Systema/THERMICA
- CAD Mechanical design interface AutoDesk Inventor, SpaceClaim, ANSYS
- Interface to project data analysis pipeline and Instrument End-to-End model

What we use – Cryogenic facilities

• Three cryochambers

- Blue Barrel (samples cycling, properties measurement, sensors calibration)
 - cold stage 360mm diameter, 300 mm height.
 - One 2-stage cooler (1.5W@4K and 35W@50 K)
- Big Coffin (cryogenic instruments characterization and calibration)
 - About 2mX1mX0.5m volume
 - Three 2-stage coolers (1.5W@4K and 35W@50 K, 5W@20K and 100W@80K, 12W@20K and 30W@65K)
- The Bell
 - About 2 m diameter, 2m height
 - One 2-stage cooler 5W@20K and 100W@80K, two 50K coolers lifting the thermal tent
- Three vacuum benches available
- A set of more than 30 cryogenic temperature sensors, and readout system allowing 36 high accuracy temperature monitoring channels and 8 control loops

- Challenging thermal architecture solutions
- Successfully operated

- Challenging thermal architecture solutions
- Successfully operated
- Planck sorption cooler: new technology for scientific missions

- Challenging thermal architecture solutions
- Successfully operated
- Planck sorption cooler: new technology for scientific missions
- LFI radiometer architecture called for strict control of

thermal systematic effects

- Challenging thermal architecture solutions
- Successfully operated
- Planck sorption cooler: new technology for scientific missions
- LFI radiometer architecture called for strict control of

thermal systematic effects

• The 4K reference load: designed, developed, integrated, tested in BO

LSPE/STRIP

- Team OAS: G. Morgante, M. Sandri, F. Villa, L. Terenzi, F. Cuttaia
- Large collaboration involving INAF structures, Italian Universities and International research institutes
- One 3-years degree student (UniMI), 3 Master's degree students (UniBO, UniTs,UPSud-Saclay)
- Cryogenic system design and testing. Support to instrument calibration

LSPE/STRIP

- Team OAS: G. Morgante, M. Sandri, F. Villa, L. Terenzi, F. Cuttaia
- Large collaboration involving INAF structures, Italian Universities and International research institutes
- One 3-years degree student (UniMI), 3 Master's degree students (UniBO, UniTs,UPSud-Saclay)
- Cryogenic system design and testing. Support to instrument calibration
- Thermal systematics assessment and verification

LiteBIRD

OAS Bologna (see G. Morgante slides):

- Participation and support to the ESA Concurrent Design Facility (CDF) study on the High Frequency Telescope (HFT) on board the LiteBIRD mission
- Trade-off analysis of the thermo-mechanical configuration of the HFT proposed optical designs for the selection of the baseline and possible alternative options
- Materials and technical solutions analysis for the optimization of the HFT thermal design
- Thermo-mechanical design optimization of the LiteBIRD HFT selected baseline

Team OAS: G. Morgante, M. Sandri, F. Villa, L. Terenzi, F. Cuttaia

Euclid - NISP

- Challenging thermal design
- Stability in time of optical element (lenses)
- Colder FPA over a warmer structure (NIOMA)
- OAS Bologna Thermal Activities:
 - Thermal Architecture Lead of the NISP Instrument
 - Thermal design and modeling of the opto-mechanical (NI-OMA) and detector (NI-DS) thermal control
 - Thermal analysis of NISP in the PLM operating environment and in the TV/TB test configuration.
 - A semi-detailed ESATAN-TMS G/TMM
 - A detailed thermal FEM in Abaqus (A. De Rosa)
 - System Thermal Engineering:
 - Definition and optimization of the thermal interfaces internal and external (to PLM and SVM) to the instrument.
 - Thermal AIV at sub-system and system level
 - Definition of the thermal control operating procedures

Team OAS: G. Morgante, A. De Rosa

ARIEL PLM Thermal Activity

• 3500+ exoplanets in our Galaxy... and counting!

- Basic parameters, such as mass & radius, are not enough to understand how these planets look like, their history/evolution.
- Atmospheric chemistry gives access to the composition, history & evolution of the planet

ARIEL PLM Thermal Activity

- ARIEL recipe:
 - 1-m space telescope (agility + no Earth atmosphere)
 - Satellite in L2 (thermal stability + sky visibility)
 - Simultaneous spectra 0.5-7.8 micron (molecular detection + stellar activity)
 - R > 20 below 2 μ m, R ≥ 100 in (1,95-3,90) μ m, R ≥ 30 in (3,90-7,80) μ m
 - > 500 (1000 expected) exoplanets observed, rocky + gaseous (large population)
- Challenging Thermal Design: Cold PLM sitting on top of warm SVM
 - Passive cooling down to 50K (Vgroovs + radiators)
 - Active cooling (Ne JT cooler) for spectrometer detectors
 - OAS contribution: GS, PLM thermal Lead, Telescope development
- OAS Team/Support:
 - G. Malaguti (GS Coordinator, co-PI)
 - G. Morgante (Thermal Architectre Lead, System Team)
 - L. Terenzi (Thermal Engineer)
 - One Master thesis student (PoliMi) 2 12 mo's fellowship
 - ASI funded for Phase B1, HW/SW, travels, 1 TD, around 140K

- - OAS Bologna Activities (Thermal)
 - PLM Thermal Architecture Lead
 - System Thermal Engineering
 - PLM TMM
 - Requirements for all sub-systems
 - **Development of M1 Prototype**
 - Thermo-mech engineering of PTM and FM
 - Thermal and cryogenic test of PTM coating samples @ OAS

Theseus Thermal Activity

- OAS Bologna Thermal Activities:
 - XGIS thermal system engineering
 - XGIS (optics, detectors, electronics) thermal design
 - XGIS thermal modeling @ sub-system level

Team OAS: G. Morgante, L. Terenzi

HERMES – Thermal Activity

SDD average temperature is -12°C with ΔT 1°C

□ OAS Bologna thermal activities:

- HERMES thermal system engineering
- PLM (optics, detectors, electronics) thermal design
- PLM thermal modeling @sub-systemlevel and @ system level
- Thermal orbits simulation

FAMU Thermal Activity

FAMU (Fisica Atomo Muonico), INFN project (Trieste et al.), high precision measurement of

1S

 $\Box \Delta E_{HFS}(\mu p)$ 1S muonic hydrogen ground state hyperfine splitting Solve the proton charge radius puzzle 1³S₁ (F=1)

FAMU 2016 Cryogenic Target

OAS Bologna Thermal Activity: Cryostat thermo-mech design

Laser cavity thermo-mech design (vs optical)

Trade-off thermo-mech vs optical

Team OAS: G. Morgante, F. Fuschino

∆E^{HFS}

1¹S₀ (F=0)

units fm	charge radius r _{ch}
e ⁻ -p scattering & spectroscopy	r _{ch} = 0.8775(51)
μ⁻-p Lamb shift spectroscopy	r _{ch} =0.84089(39)

PROBA-3 SPS

- PROBA-3 is a mission devoted to the in-orbit demonstration (IOD) of precise formation flying (F²) techniques and technologies for future ESA missions.
- PROBA-3 will fly ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun) as primary payload
- SPS (Shadow Position Sensor) is a metrology subassembly of the ASPIICS
- INAF collaboration with OATo, OAA, together with Italian and European companies

PROBA-3 SPS

- The activity is within the SPS development activities:
 - Thermal design and verification of the SPS
- The main driver has been to limit the load deriving from Sun radiation leaking without affecting other sub-systems

MAORY

- The activity is within the ThCS WP
- Thermal design and analysis
- Fluid loop design

