Multiwavelength studies of fast transients: GRBs, FRBs and GWs

OAS DAYS Bologna, 17-18 dicembre 2018

GRBs and FRBs

The OAS GRBs and FRBs member team:

L. Amati, M. Dadina, G. De Cesare, E. Maiorano, N. Masetti, L. Nicastro, E. Palazzi, E. Pian,

<u>A. Rossi,</u> G. Stratta

Gamma Ray Bursts

GRB-related works @ OAS

- Active members of the national CIBO (Coordinamento Italiano Burst Ottici) and the European STARGATE collaborations for the search and follow-up GRB afterglows at the INAF and ESO Telescopes respectively
- GRB-SN connections
- Host galaxies multiwavelength observations and studies
- Studies of the high energy prompt GRB emission and of the X-ray afterglow properties
- Use of GRBs as cosmological probe

GRB-SN connections

- All the observed GRB-SNe are type Ic: their ejecta contain no H and no He.
- Estimated progenitor masses are in the range 30-50 M_☉ and ejecta masses in the range 8-12 M_☉
- Their kinetic energy after correction for asymmetry is still one order mag larger than typical SNe Ic.
- Two contending scenarios for the powering mechanism: collapsar or magnetar?
- Both scenarios may contribute \rightarrow more GRB-SN data needed.

Adapted from Ashall, Pian et al., arXiv: 170204339

GRB-SN connections

- GRB afterglow
- SN

Multiband SED modeling of afterglows:

- double broken power-law
- synchrotron emission

Spectroscopic follow-up of GRB-SNe

GRB180728A, the closest high-luminosity GRB ever Rossi et al., in prep.

GRB170105A/ATLAS17aeu Melandri et al., 2018, arXiv:1807.0368, A&A accepted

GRB Host galaxies

• Short GRBHs

• Short: both quiescent and star forming, generally more massive

Sub-arcsec loc. + XRT

• Long GRBHs

- star forming galaxies, with preference for low metallicity blue dwarf galaxies at low redshift
- 30-40% of all long GRBs are dark Half of them may be host by extremely red objects

GRB Host galaxies

Long GRB host properties

Rossi et al., in prep

Missing host problem:

- high-z?
- low-luminosity HG?
- Kicked progenitor

Multiband SED modeling

Nicuesa et al., 2015

Hunt et al. 2014

X-ray Afterglows

X-ray afterglow light curves from Swift/BAT+XRT data

Long and short GRBs seem to follow the same well known B vs P correlation of accreting PSR

- 1) Confirmation of past evidence on the presence of a central magnetar injection power into the afterglow
- 2) Evidence that long GRB have faster spinning magnetar w/r to short GRB possibly due to larger accreting matter

Stratta et al. 2018, ApJ in press

GRB as cosmological probes

Fast Radio Bursts

Mysterious radio transients with ms duration ⇒ must be compact

Mostly detected around 1GHz

High Dispersion Measure, greater than local Galaxy value ⇒ extragalactic

Possibly two types: repetitive vs non repetitive

Unknown origin; there are still more models that detected FRBs

FRBs-related works @ OAS

FRB 180301. Zoom-in on the FRB error circle observed with **VST**, i band. ESFgalaxies (green peas), variable sources within 1 day (magenta)

Follow-up of FRB 180301, 180309, 180311

Search of the candidates:

- Large FOV instruments: OMEGACAM/VST and VIRCAM/VISTA
- Swift/XRT

Methods:

- photometric relative variability
- image subtraction.

Characterization of candidates with VLT-X-Shooter

Gravitational Waves: Activities on the electromagnetic follow-up

The OAS GW member team:

L. Amati, A. Bulgarelli, F. Cusano, A. De Rosa, M. Dadina, G. De Cesare, V. Fioretti, G. Lanzuisi, E. Maiorano, N. Masetti, L. Nicastro, E. Palazzi, N. Parmiggiani, E. Pian, A. Rossi, <u>G. Stratta</u>, E. Torresi, D. Vergani (+ DIFA and IRA colleagues)

High Frequency (10-1000 Hz) GW sources

- The frequency range at which GW detectors are sensitive tell us type of sources we can observe
- At high frequencies we expect to see
 - Compact-binary coalescences
 - core-collapsing stars
 - instability phenomena on NSs

Expected e.m. counterparts

Metzger & Berger 2012

GW170817 \rightarrow first GW source associated with an EM counterpart! +1.7 s \rightarrow short GRB (Fermi+INTEGRAL) + 11 hrs \rightarrow optical counterpart (Swope + many others and REM!) +1.5 days \rightarrow optical spectrum (VLT/X-shooter, GMOS, Soar Magellan Telescope) + 9 days \rightarrow X-ray counterpart + 16 days \rightarrow radio counterpart

Expected e.m. counterparts

Abbott et al. 2018 ApJL 848, L13

GW source localization

Triangulation \rightarrow 100-1000 deg² with 2 detectors, 10-100 deg² with 3 detectors

10 BH-BH and 1 NS-NS localization at 90% CL in the range 1500-16 deg^2

1st GW transient catalog, Abbott+2018, https://arxiv.org/abs/1811.12907

GW-related expertises @ OAS

remio INAF! **Transient sources observational strategies** and follow-up (GRBs and FRBs)

- High energy (keV, MeV GeV) data analysis
- Multi-wavelength data analysis
- Photometry + Spectroscopy
- **GW** data analysis
- Infrastructure and outreach

L.Amati-oo, A.Bulgarelli-o, F.Cusano-o, A.De Rosa-o, M.Dadina-oo, G.De Cesare-oo, V.Fioretti-oo, G.Lanzuisi-o, E.Maiorano-oo, N.Masetti-oo, L.Nicastro-oo, E.Palazzi-ooo, E.Pian-000, A.Rossi-000, G.Stratta-000, E.Torresi-0, D. Vergani-o premio "Occhialini"!

Follow-up results during the O1 & O2 LVC runs

OAS members participated to the e.m. follow-up campaigns during the first two LVC observational runs O1 (Sept-Dec 2015) and O2 (Jan-Aug 2017)

Large FoV telescope = VST \rightarrow tiling strategy \rightarrow candidate list

Small FoV telescopes = Asiago, REM, Loiano, TNG, Campo Imperatore \rightarrow candidate characterization GW150914, GW sky localization: 600 deg² at 90% CL VST tiling (90 deg²) +2.9 days (23hr after the alert)

Brocato et al. 2018, MNRAS 474, 411 Abbott et al. ApJL 826, L13

Follow-up results during the O1 & O2 LVC runs

- Several e.m. candidates have been characterized via spectroscopic and photometric observations
- Results have been published in a number of papers (e.g., Melandri et al. 2018, Grado et al. 2018, Pian et al. 2017)

SN Ibn discovered during follow-up of GW151226, (*Piranomonte et al. in prep.*)

OAS observational contribution to GW 170817

GW170817 is associated with the merger of two NSs and is the only GW source with e.m. counterpart so far.

- **REM**: optical transient early observations at ~11 hrs
- VLT-X/shooter: kilonova KN 170817 follow-up and high quality spectra
- LBT/LBC: Unique ground-based detection of the afterglow of GRB 170817A

AGILE Real Time Analysis for GW Alerts during O1 and O2

- AGILE system reacts to LIGO/VIRGO GW Alerts sending notifications to the AGILE Team and performing a real-time analysis of AGILE data to detect possible EM counterparts
- The full AGILE pipeline has been developed and is running @OAS Bologna
- OAS Bologna has also the responsibility of the follow-up operations
- Results also accessible through a mobile App (AGILEScience)

A. Bulgarelli, N. Parmiggiani, V. Fioretti, L. Baroncelli, M. Trifoglio, F. Gianotti

The case of GW170817

 $GW170817 \rightarrow \text{ first } GW \text{ source associated}$ with an EM counterpart!

- +1.7 s \rightarrow short GRB (Fermi+INTEGRAL)
- + 11 hrs → optical counterpart (Swope + many others and REM!)
- +1.5 days → optical spectrum (VLT/X-shooter, GMOS, Soar Magellan Telescope)
- + 9 days \rightarrow X-ray counterpart
- + 16 days \rightarrow radio counterpart

GW-related ongoing works @ OAS

• Kilonova 170817:

- Could we had seen a kilonova like KN170817 in past short GRB afterglows?
- Which chemical abundances of freshly synthesized heavy elements are shaping the spectra?

• Host galaxy NGC4993:

- How peculiar is it (w/r to e.g. short GRB hosts)?
- Optimization of galaxy target strategies

• **DB of nearby galaxy reference images** for small telescopes as Savelli, REM, ITM

GW-related future works @ OAS

SoXS(+2021)@ESO-NTT followup+characterization of GW e.m. candidate counterparts + host galaxies (https://www.eso.org/sci/facilities/develop/instruments/SoXS.html)

ELT(2025+) science case on characterization of GW e.m. candidate counterparts + host galaxies

Cherenkov Telescope Array (2025+):

- Science Alert Generation System
- Instrumental response for transient sources
- **Simulations** of scientific observations in different modes

THESEUS (2032+): sky localization of GW sources detected but very poorly localized with 3G

GRB simulated with CTA

THESEUS GW source localization capabilities (Amati et al. 2018, Stratta et al. 2018)

Infrastructure & tools

The OAS member team:

L. Nicastro

Infrastructure & tools

OAS resources

- 5 rack servers + backup + edu.inaf
 - ross, ross2, luna, cats, oastrodb1
- ~ 25 TB RAID1
- Use: storage + computing + Web server + DB server
- Projects: REM, QSFit, Gaia + AstroCats, X-ray + Optical/IR data analysis, BeppoSAX-GRBM, etc.
- S/W: public + Custom s/w
- Access: ssh, web, db

https://owncloud.iasfbo.inaf.it/owncloud/

https://grawita.inaf.it/VSTbrowse/GW170814/

Data analysis teams

- ESO Tools: ESOREX, IFUANAL, ... -
- IRAF (various flavours), DAOPHOT, SExtractor
- Custom s/w

(Git + Jackall) Public info

(MediaWiki) Private docs

Blog (Slack) Discussion

DB & Web tools

- MCS: <u>https://github.com/gcalderone/MCS</u>
- DIF / SID: <u>https://github.com/Inicastro/DIF</u> <u>https://github.com/Inicastro/SID</u>
- Spectra: <u>http://qsfit.inaf.it/</u>
- DB course: <u>http://ross2.iasfbo.inaf.it/wp/imprs18/</u>
- Catalogues: <u>http://cats.iasfbo.inaf.it</u> <u>http://cats.iasfbo.inaf.it/TOCatsweb/</u>
- Images: <u>http://ross.iasfbo.inaf.it/REMDBdev/</u> <u>https://grawita.inaf.it/VSTbrowse/GW170814/</u>
- Spectra: <u>http://qsfit.inaf.it/</u>

Ingredients:

- DB server \Rightarrow MySQL/MariaDB
- Web server \Rightarrow Apache
- Language ⇒ HTML5, CSS3, PHP, JavaScript

Calderone et al., MNRAS, 72, 4 (2017)

Main JS packages: AladinLite, JS9, amCharts

Catalogue of spe Version 2.0.0	ctral properties of Type 1 AGN (selected from SDSS DR10)					
Dra	g & drop your spectral file here or Q Browse					
spettro-loiano_ncg4051_e-17.txt (type Redshift: 0.00234 E(B-V): 0.011 Customize analysis	e: text/plain) - 36814 bytes Process this file >					
NO	Use a separate component for the [OIII]5007 blue wing					
VES Use the Balmer continuum component						
YES	Use a Lorentzian profile for the emission lines (instead of a Gaussian one)					
7590, 7618, 6859	Comma separated list of rest frame wavelengths of the absorption lines					
free	Fixed continuum slope (leave blank for free parameter)					
1000()	Minimum line resolution (in km/s) to fit the line					
SWIRE_ELL5 ᅌ	Host galaxy template					

Kemove all We Hide all Show all Go to start C Enlarge 🕂 Shrink	Max objects: 10000	gaiadr2_mini_hips10 -	HPX order: 10 –	c.: 253.645,-42.	362 – r.: 32.95'
atalogue Gaia DR2	Toggle column [M	lag – Nobjs – HPXid] 🗌	Draw objs when	entries shown	
	RA	Dec	Mag	Nobjs	HPXid
	253.645118	-42.362302	3.00723	454	10850256
o o o o o o o o o o o o o o o o o o o	253.498862	-42.362044	4.48535	491	10850247
	253.612254	-42.478925	5.63661	371	10850244
	253.495218	-41.994337	6.09274	472	10853003
	253.76387	-42.09084	6.12814	524	10852910
	253.582076	-41.819879	6.54054	657	10853017
	253.369236	-42.121411	7.10097	369	10850289
္ ေရ ေရ လို ေရ	253.481694	-41.880981	7.50988	625	10853006
	253.555103	-41.842374	7.80896	745	10853016
	253.46523	-41.842429	8.32829	570	10853029
DSS color	RA	Dec	Mag	Nobjs	HPXid
jects density map: Gaia DR2 Gaia DR1 PanSTARRS1 2MASS GSC 2.3	Showing 1 to 10 o	f 291 entries Previous	1 2 3	3 4 5	30 Nex
erlay Simbad objects 3582 objects	There a	are 126,147 objec	ts in the fie	ld. Got 291	brightest.

http://cats.iasfbo.inaf.it/gaiadr2_mini_hips10/size=0.5492&ra=253.645&dec=-42.362

https://grawita.inaf.it/VSTbrowse/GW170814/

VST variable sky browser - Version 0.2a - Developed using DIF

+ Catalog: VST_r_20170814_mrg - 233957 objs	ᅌ Filter	cats: Filter	list strin	g	Q Fil	ter	IPX ord	er: 5 – c.: 4	43.5,-42	2.5 – r.: 16	.46°
where ex. mag_auto < 19 Max objs: 1000	🔿 Overlay 🗙	Clear	Hide all	👁 Sh	now all	🗘 Go to	start	[] Enlarge	e ii	Shrink	Remove all
VST20170814 ○ Get FITS of FoV 300 € pix	Toggle column Show 10 📀	eMag – Are	ea – a –	b – FWH	M – Ellip	o – Flags] 🗆 Dra	aw objs wh	en entri	es shown	Good
	N. 🗘 RA 🕯	Dec 🕴	Mag [▲]	eMag 🔷	Area 🔶	a 🕴	b≑	FWHM 🔶	Ellip	Flags 🔶	fill Junk
	1563 39.35211	-52.54124	6.38	0	110091	275.223	15.208	388.4	0.945	52	E ounix
Q • • •	734 40.52736	6 -38.38173	6.511	0	66563	145.239	17.704	304.43	0.878	22	
8 00	716 43.39342	2 -38.43452	6.675	0	66264	119.567	14.758	252.19	0.877	22	
• •	1284 40.53501	-46.52223	6.741	0	70023	127.727	14.518	258.53	0.886	22	
.0 0	2387 45.98008	3 -43.89757	7.03	0	55073	99.404	12.851	214.58	0.871	22	
	948 44.20168	3 -35.37821	7.039	0	56571	104.522	13.551	225.94	0.87	20	
* •	2321 35.72726	6 -51.08877	7.085	0	41204	77.613	11.195	176.97	0.856	23	
	1071 40.83443	-40.52745	7.216	0	49020	57.19	13.655	167.77	0.761	20	
	1121 44.90945	-32.50722	7.237	0	54263	69.627	14.409	190.16	0.793	20	
	3 39.78182	-52.93406	7.317	0	44049	71.892	11.778	174.7	0.836	20	
	Showing 1 to 10) of 49 entrie	IS		Previou	s 1	2	3 4	5	Next	
FoV: 22.63°		. (There	are 49	object	s in the	field.				
You clicked in void		Super-n	nenu to	contro	I all win	dows b	elow				
Overlay Reference Catalogue	File View	Zoom	Scale	Color	Region	s WCS	S Ana	alysis He	elp		
Gaia DR2 Gaia DR2	□ View in a ray	w 🗆 Use fir	st windo	w only							

http://ross.iasfbo.inaf.it/REMDBdev/

http://ross.iasfbo.inaf.it/REMDBdev/

Perspectives

Fast transients work continues as usual, but...

- Personnel: no "full time" appointed ⇒ investment/support from OAS
 - About 15 people involved \Rightarrow relevant resources (internal + external) are required
- HW / SW packages / algorithms in particular ML
 - Expertise scarce at the moment people involvement always welcome
- New requirements / challenges in view of future facilities like LSST, CTA, ET, THESEUS, SKA, etc.