Hot Atmospheres and AGN Feedback in Early Type Galaxies

Norbert Werner MTA-Eötvös University/Masaryk University

MY TEAM:

MTA-ELTE LENDÜLET HOT UNIVERSE RESEARCH GROUP

Postdoctoral researchers:

Nhut Truong Numerical simulations

Kiran Lakhchaura Black hole feedback

Francois Mernier Chemical enrichment

Jakub Řípa Gamma-ray bursts

Why so Much Gas and so Few Stars?

Why so Much Gas and so Few Stars?

Hot Atmospheres and AGN Feedback in Early Type Galaxies

 $L_{\rm x} \sim 10^{46} \, {\rm erg} \, {\rm s}^{-1}$ $E_{\rm bubble} \sim 10^{62} \, {\rm erg}$

 $L_{\rm x} \sim 10^{41} \, {\rm erg} \, {\rm s}^{-1}$ $E_{\rm bubble} \sim 10^{56} \, {\rm erg}$

RED AND DEAD GIANT ELLIPTICAL GALAXIES

FORMATION OF AN ELLIPTICAL GALAXY

Cattaneo et al. 2009

THE DISCOVERY OF "RED NUGGETS"

Daddi et al. 2005

MRK 1216 A RELIC RED NUGGET

$$\begin{split} M_{\text{stellar}} &= (2.0 \pm 0.8) \times 10^{11} \, M_{\odot} \\ R_{\text{e}} &= 2.3 \pm 0.1 \, \text{kpc} \\ \text{Age} &= 12.8 \pm 1.5 \, \text{Gyr} \\ M_{\text{BH}} &= (4.9 \pm 1.7) \times 10^9 \, M_{\odot} \\ D &= 97 \, \text{Mpc} \, (\text{Ferre-Mateu et al. 2017}) \\ \end{split}$$

THE HOT ATMOSPHERE OF THE RELIC RED NUGGET MRK 1216

Buote & Barth et al. 2018

Hot atmosphere surrounding a relic red nugget

AGN feedback preventing star formation for ~13 billion years!

 $L_X = 5.3 \times 10^{40} \text{ erg s}^{-1}$ within r<10 kpc

Galactic atmospheres at high redshifts with Athena

Simulations by F. Mernier

Hot atmosphere surrounding a relic red nugget

- The first detection of an X-ray emitting atmosphere surrounding such a relic galaxy
- The hot atmospheres extend far beyond the stellar populations and the luminosities and gas masses show an order of magnitude difference
- The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative formation of the galaxy 13 Gyrs ago - **radio-mechanical AGN feedback**
- Given that over the past ~ 13 billion years both galaxies appear to have evolved passively and in isolation, the difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems.

Jones et al. 2002 Baldi et al. 2009

Randall et al. 2015

Hlavacek-Larrondo et al. 2015

$H\boldsymbol{\alpha} + [NII] IMAGING WITH THE SOAR TELESCOPE$

FAR-INFRARED LINE DETECTIONS IN GIANT ELLIPTICALS

- [CII] detected in every single galaxy
 (6/8) with extended Hα line emitting nebulae
- in 4/8 systems also detected the [OI] line and in 3/8 the [OIb] line

[CII] EMISSION FOLLOWING H α

VELOCITIES OF THE COLD ISM

Werner et al. 2014

VELOCITY DISPERSIONS IN THE COLD ISM

DESTRUCTION OF MOLECULAR GAS BY RADIO LOBES

Simionescu et al. 2018

PROPERTIES OF THE HOT ISM

Outside of the innermost core, the entropy and temperature of systems containing cold gas is lower

> Werner et al. 2014 Voit et al. 2015

COLD GAS RICH SYSTEMS PRONE TO COOLING INSTABILITIES

Voit et al. 2015

Cooling vs. Heating in galactic atmospheres

Lakhchaura et al. 2018

Cooling in a rotating X-ray atmosphere

Juráňová et al. 2018.

Unusually steep entropy profiles in systems with powerful jets

(Jy/beam)

Grossova et al. 2018.

Lakhchaura et al. 2018

Babyk et al. 2018

Lakhchaura et al. 2018

Lakhchaura et al. 2018

Atmospheres of early type galaxies were accreted externally (and augmented by stellar mass loss)

Mernier et al. 2018a

Mernier et al. 2018b see also de Plaa et al. 2017

with a contribution of other Japanese universities and institutes

contribution of other US/EU universities and institutes

X-ray spectrum of the core of the Perseus cluster

Hitomi (ASTRO-H) Observation

Hitomi collaboration, Nature, 2016

Fe XXV He_{α}

Hitomi collaboration, Nature, 2016

Turbulent and bulk motions

for gas motions on small spatial scales we expect significant line-of-sight velocity dispersion **σ**, resulting in line broadening, but no centroid shifts

if the spatial scale of motions is large, then we expect significant centroid shifts

Energy

First Direct Velocity Measurements

line broadening

 $E_{turb}/E_{therm} \sim 2-6\%$

Hitomi collaboration, PASJ 2018

First Direct Velocity Measurements

line shifts

Hitomi collaboration, PASJ 2018

Resonance scattering in optically thick lines

No turbulence

.....

turbulence

Line suppressed by resonance scattering

Ogorzalek et al. 2017

1D velocity 107 km/s 3D velocity of Mach 0.44 pressure support of 5.6 %

scatter consistent with zero (but errors are large)

Summary

- Galaxies with halo mass similar to the Milky Way (≈ 10¹² M_☉) or higher host hot X-ray emitting atmospheres and central supermassive black holes.
- Jets emanating from blacks holes accreting at highly sub-Eddington rate are sufficiently powerful to balance the radiative cooling of hot atmospheres and limit further star-formation.
- The chemical composition of giant elliptical atmospheres is at variance with their stellar populations, which typically show an overabundance of α elements.
- Recent studies have shown that most molecular gas in ellipticals has likely cooled from their hot atmospheres.
- Non-thermal (kinetic) pressure support in the hot atmospheres of galaxies and clusters is less than 10%