

Cerro Amazones 3060m

new challenges in modern astronomy and astrophysics: the Extremely Large Telescope (ELT) project

Paranal Observatory 2635m

Livia Origlia - INAF OAS Bologna e-mail:livia.origlia@inaf.it

OAS Days - Bologna, 17-18 December 2018

the ELT project

https://www.eso.org/public/teles-instr/elt/

the ELT telescope with a primary mirror of 39m in diameter will be the largest optical/near-IR telescope in the word, excelling in collecting power and angular resolution

milestones

Dec 2014: ESO Council gave green light for ELT construction
 June 2016: Council approved first light in 2024

Italian participation

ESO-member state

Industries: ACe (dome structure), AdOptica (M4 cell)

> INAF instrument PI-ships (MAORY & HIRES)

> some participation in MICADO & MOS

the site

Cerro Amazones (Chile), altitude=3060m, b=-24°S, l=-70°W

median seeing=0.67 arcsec at 500nm, median relative humidity=15%, mean wind speed =7m/s, air temperature between -15°C and +25°C, yearly median nighttime =9°C, average day/night difference =4°C

the dome

74m height, 86m diameter, single pair of sliding doors with 45.3m total width

the 39m telescope

novel 5 mirror design to include adaptive optics in the telescope, diffraction limited over the full ${\sim}10'$ FoV

M1 Unit - 39m Concave - Aspheric f/0.9 Segmented (798 segments of 1.4m) Active + Segment shape Control

M2 Unit - 4m Convex Aspheric f/1.1 Passive + Position Control

M3 Unit - 4m Concave - Aspheric f/2.6 Active + Position Control

M4 Unit - 2.4m Flat, Segmented (6 petals with 5000+ actuators each) Adaptive + Position Control

M5 Unit - 2.7x2.1m Flat, Passive + Fast Tip/Tilt

LGSU - (Laser Guide Star Units) Laser Sources + Laser Beacons shaping and emitting

courtesy of M. Cirasuolo, ELT Programme Scientist

instrument suite – 1^{st} generation

imagers & spectrographs with different spatial & spectral resolutions in the optical-IR range

the ability to observe over a wide range of wavelengths from the optical to mid-infrared and in different instrumental configurations will allow scientists to exploit the telescope's size to the fullest extent

roadmap

first light

- ELT-CAM (MICADO+MAORY)
- ELT-IFU (HARMONI+LTAO)
- ELT-MIDIR (METIS)
- post-first light
- high resolution spectrograph (HIRES)
- multi-object spectrograph (MOS)

instrument suite – 1^{st} generation

imagers & spectrographs with different spatial & spectral resolutions in the optical-IR range

courtesy of M. Cirasuolo, ELT Programme Scientist

Project Office

Principal Investigator: Alessandro Marconi (I) Project Scientist: Roberto Maiolino (UK)

Project/ Study Manager (PM): Luca Valenziano (I), Deputies: Eric Stempels (S), Phil Parr-Burman (UK) System Engineer (SE): Marco Riva (I), Deputies: Alexandre Cabral (PT), Santiago Becerril (ES), Bruno Chazelas (CH) Software System Engineer (SSE): Paolo Di Marcantonio (I), Deputies: Tzu Chen (CHL), Manuel Monteiro (PT) Instrument Scientist (IS): Livia Origlia (I), Deputies: Pedro Amado (ES), Michael Weber (D), Francois Bouchy (CH)

<u>OAS people</u>: L. Valenziano (PM), L. Origlia (IS), F. Sortino (ConfMan), D. Romano (ST) UniBo: A. Mucciarelli (ST)

observing modes

examples of observing modes to maximize throughput

obs mode	B1	B2	B3	B4
spectral resolution	100,000	100,000	150,000	150,000
# of apertures on sky	1 (obj)	2 (obj+sky)	1 (obj)	2 (obj+sky)
# of fibers per aperture	64	30	96	46
aperture diameter on sky	1.36"	0.93"	1.11"	0.77"
simultaneous calib	no	no	no	no

basic concepts

- > obs modes characterized by different configurations for spectral resolution and aperture on sky to fulfil the science TLRs
- > spectral resolution defined by the sky-projected angular size of the fiber (a)

> aperture on sky (A) defined by the angular size of the fiber bundle (A=a × sqrt(N_{fibers})

current optical design of each spectrometer based on cameras with a maximum slit length of 11 arcsec and a dispersion grating with a length of 1.6 meters

- at $R=100k \rightarrow max$ 64 fibers with max angular diameter of 0.170 arcsec
- at R=150k → max 96 fibers with max angular diameter of 0.113 arcsec
- > each obs mode will have dedicated fiber bundle(s)

different bundles will also have different fiber coupling in the fiber-to-fiber interface to optimize throughput (e.g. high efficiency telecom connectors as in APOGEE) or accuracy (e.g. double-scrambling)

of bundles/obs modes > tradeoff among science priority, cost & complexity to be finalized in the next project phases ...

from current 8-10m class telescopes to ELT-39m

Planets & Stars

Stars & Galaxies

Galaxies & Cosmology

impact on performances

spatial resolution at the diffraction limit: ~1/D_{tel} → 4-5x <u>better</u>
 field of view (projected area on sky): Ω ×A~const → Ω ~1/D²_{tel} → ~20× <u>smaller</u>
 sensitivity (S/N): ~D_{tel} (seeing lim) to D²_{tel} (diffraction lim) → 4-5× to ~20× <u>better</u>

from current 8-10m class telescopes to ELT-39m

Planets & Stars

Stars & Galaxies

Galaxies & Cosmology

impact on astrophysical information

from discovery to characterization ... from sketchy to detailed ... from local to distant ... from below to above the threshold ... the unknown

from discovery to characterization ...

observation and characterization of **exoplanets** in habitable zones, with possible detection of **bio-signatures** in their atmosphere

from discovery to characterization ...

star/disk/planet formation

observation and characterization of proto-planetary disks, with possible detection of pre-biotic molecules

from sketchy to detailed stellar physics

stars: 3D structure, asteroseismology, accurate surface parameters, activity, mixing, diffusion, yields & nucleosynthesis **across the full space of parameters**

from sketchy to detailed ...

black holes

demography: from stellar to intermediate to super-massive
 detailed mapping: motions of gas and stars around them

from local to distant ... stellar archaeology

accurate ages, kinematics and chemistry of stellar populations in the Local Group and beyond

galaxy formation and evolution

from local to distant ...

galaxies: structure, dynamics & chemical enrichment at high redshift

from below to above the threshold ...

Inter Galactic Medium: detailed chemistry & tomography
Sandage test: measuring the expansion rate of the Universe by adopting a model-independent approach → redshift drift

fine structure constant (α) and proton-electron mass ratio (μ) are they really constant?

cosmological searches have the enormous advantage of exploring possible variations over 12 Gyr time-scales and 15 Gpc spatial scales