

Misure preliminari per la valutazione dell'angolo d'incidenza ottimale di raggi X per rivelatori di CdTe

Rapporto Interno n. 384

N. Auricchio, L. Brigliadori, A. Donati, W. Dusi, D. Mengoni, G. Ventura

IASF - Sezione di Bologna

Indice

- 1. Introduzione
- 2. Caratterizzazione del rivelatore
- 3. Determinazione della corrente del generatore di raggi X
- 4. Scansione a diversi angoli
 - 4.1 Risultati
- 5. Influenza dello schermo di Piombo

6. Allineamento dell'asse del collimatore dello spettrometro con l'asse del fascio del generatore di raggi X

7. Test con sorgenti

Appendice A

1. Introduzione

Nell'ambito del progetto europeo Med-X-Test un prototipo dello spettrometro è stato testato presso il Servizio di Fisica Sanitaria del Policlinico Universitario Sant'Orsola di Bologna. Lo scopo del presente report è di:

- 1. descrivere il setup sperimentale;
- 2. riportare le modalità delle misure acquisite;
- 3. analizzare i dati.

Gli obiettivi delle misure sono stati di:

- determinare la risposta spettroscopica del prototipo dello spettrometro in termini d'efficienza, risoluzione energetica e posizione del centroide del picco in corrispondenza delle righe caratteristiche $K_{\alpha 1}$ (59.31 keV) e $K_{\beta 2}$ (69.089 keV);
- verificare la procedura d'allineamento del canale di collimazione con il fascio X utilizzando un laser;
- determinare la massima corrente del generatore utilizzabile per contenere il tempo morto a valori accettabili ed evitare la saturazione;
- investigare il comportamento spettroscopico del rivelatore dello spettrometro al variare della tensione del generatore di raggi X;
- determinare l'angolo d'incidenza ottimale del rivelatore per il flusso di raggi X.

2. Caratterizzazione del rivelatore

Il rivelatore impiegato, di dimensioni $3x3x10 \text{ mm}^3$ (number code 1271_64b), è stato testato con la sorgente di ⁵⁷Co (n. 13) che emette fotoni gamma di 14- 122-136 keV a 65°, 87° e 90° per determinarne le performance prima dell'irraggiamento con il tubo a raggi X. Lo schema a blocchi della catena elettronica di readout impiegata nelle misure è il seguente:

Fig. 1. Schema della catena elettronica d'acquisizione.

I componenti della catena elettronica sono:

- un alimentatore d'alta tensione HV Tennelec TC 953A (Canale B);
- un preamplificatore di carica CS 515-2, che fornisce una prima amplificazione del segnale ed è alimentato dal retro dell'amplificatore;
- un amplificatore formatore Silena Modello 7611/L;
- un linear gate and stretcher Tennelec TC 310 (canale B) per allungare il segnale che sarà convertito dall'ADC dell'analizzatore multicanale;
- un analizzatore multicanale per l'acquisizione degli spettri Modello APTEC Serie 3000.

La tensione di polarizzata applicata al rivelatore è stata di + 150 volt con un guadagno dell'amplificatore di 500 x 1.060 ed un valore di shaping time di 0.5 microsecondi. Il *Low Level Discriminator* (LLD) dell'ADC dell'analizzatore multicanale è stato fissato a 24.98 per minimizzare l'influenza del rumore sugli spettri

acquisiti. Il collimatore di tungsteno aveva uno spessore di 2 cm ed una finestra di collimazione di $0.5 \ge 0.1 \text{ mm}^2$.

Le prestazioni del rivelatore misurate presso il Servizio di Fisica Sanitaria sono in accordo con quelle precedentemente misurate presso il laboratorio del TESRE.

3. Determinazione della corrente del generatore di raggi X

Le caratteristiche del tubo a raggi X utilizzato sono:

- ✓ Angolo dell'anodo: 12°;
- ✓ Filtrazione intrinseca: 2 mm d'Alluminio equivalente;
- ✓ Range di tensioni: $60 \div 120 \text{ kVp}$;
- \checkmark distanza fuoco-finestra d'entrata del collimatore = 165 cm.

La corrente del generatore si riferisce al numero di elettroni che fluiscono per secondo dal filamento all'anodo.

Dopo aver fissato la tensione del tubo a **100** kVp sono state acquisite alcune misure variando la corrente del tubo da 0.1 mA a 0.5 mA al fine di determinare la massima corrente operativa che non saturi il sistema d'acquisizione. Nelle seguenti figure sono riportati gli spettri acquisiti a 0.1, 0.2 0.3 e 0.5 mA con il rivelatore inclinato a 65°:

Fig. 2. Spettri acquisiti a 0.1 e 0.2 mA per una tensione di 100 kVp.

Fig. 3. Spettri acquisiti a 0.3 e 0.5 mA per una tensione di 100 kVp.

Nella seguente tabella sono riportati i valori del tempo morto del convertitore analogico digitale dell'analizzatore multicanale per ogni misura:

X-RAY TUBE CURRENT (mA)	DEAD TIME (%)
0.1	1.01
0.2	5.74
0.3	8.55
0.5	12.92

Tabella 1. Tempo morto valutato per differenti correnti del generatore.

La corrente del generatore è stata fissata a 0.1 mA poiché per valori maggiori il tempo morto è elevato.

4. Scansione a diversi angoli

Sono state eseguite tre scansioni a 70, 100, 120 kVp, variando per ogni tensione l'angolo d'incidenza del rivelatore impiegato. Nelle pagine seguenti sono riportati i grafici degli spettri acquisiti:

Fig. 4. Spettri acquisiti a 70 kVp.

Fig. 5. Spettri acquisiti a 100 kVp.

Fig. 6. Spettri acquisiti a 120 kVp.

4.1. Risultati

I dati acquisiti sono stati analizzati calcolando:

- posizione del centroide del picco a 59.31 keV;
- risoluzione energetica del picco a 59.31 keV;
- efficienza del fotopicco a 59.31 keV;
- integrale totale (gross count) su tutto lo spettro.

Nelle tabelle seguenti sono riportati i valori numerici delle diverse grandezze calcolate a 70, 100 e 120 kVp e i corrispondenti andamenti sono riportati nei grafici successivi:

$TENSIONE = 70 \ kVp$						
File name	Angle	Gross Count				
The flame	(°)	(counts)				
co-22	0	43991 ± 210				
co-23	60	43884 ± 209				
co-24	65	43552 ± 209				
co-25	70	43138 ± 208				
co-26	75	42752 ± 207				
co-27	80	41821 ± 205				

Tabella 2. Gross Count a diversi angoli a 70 kVp.

$TENSIONE = 100 \ kVp$						
File name	Angle (°)	Gross Count (counts)	Centroid (channels)	Energy Resolution (%)	Photopeak Efficiency (counts)	
co-21	0	115581 ± 340	205.26	4.69	24536 ± 157	
co-20	60	114016 ± 338	205.88	4.69	23480 ± 153	
co-04	65	107230 ± 327	204.68	5.56	18605 ± 136	
co-17	70	110577 ± 333	205.49	5.91	16422 ± 128	
co-18	75	109446 ± 331	205.15	5.53	17393 ± 132	
co-19	80	110956 ± 333	205.21	5.68	17648 ± 133	

Tabella 3. Gross Count, posizione del centroide, risoluzione energetica ed efficienza di fotopicco a diversi angoli a 100 kVp.

$TENSIONE = 120 \ kVp$						
File name	Angle (°)	Gross Count (counts)	Centroid (channels)	Energy Resolution (%)	Photopeak Efficiency (counts)	
co-14	0	171308 ± 414	205.32	5.84	34369 ± 185	
co-15	60	170121 ± 412	205.35	6.52	34569 ± 186	
co-13	65	170522 ± 413	205.74	5.64	35709 ± 189	
co-16	70	169860 ± 412	205.58	5.69	33936 ± 184	
co-10	75	142913 ± 378	205.51	6.35	26846 ± 164	
co-12	80	160557 ± 401	205.05	6.14	30705 ± 175	
co-11	87	98882 ± 314	204.65	5.57	14058 ± 119	

Tabella 4. Gross Count, posizione del centroide, risoluzione energetica ed efficienza di fotopicco a diversi angoli a 120 kVp.

Centroid vs angle

Fig. 7. Posizione del centroide a 59 keV in funzione dell'angolo d'incidenza.

Energy Resolution vs angle

Fig. 8. Risoluzione energetica a 59 keV in funzione dell'angolo d'incidenza.

Photopeak Efficiency vs angle

Fig. 9. Efficienza di fotopicco a 59 keV in funzione dell'angolo d'incidenza.

Gross Count vs angle

Fig. 10. Integrale totale in funzione dell'angolo d'incidenza.

Si può evincere che:

- ✓ gli spettri acquisiti irraggiando lo spettrometro con il fascio del generatore di raggi X sono in accordo con quelli teorici tranne che per la coda a basse energie;
- ✓ la posizione del centroide è stabile, poiché varia al massimo di un canale;
- ✓ la risoluzione energetica è soddisfacente;
- ✓ l'angolo d'incidenza ottimale è compreso tra 60° e 75°,
- ✓ per angoli maggiori di 80° la centratura deve essere particolarmente accurata, per massimizzare l'efficienza.

5. Influenza dello schermo di Piombo

Lo spettrometro è stato dotato di uno schermo di Piombo appoggiato sopra la superficie del collimatore per studiare il comportamento della coda a bassa energia presente nello spettro. Le misure sono state acquisite a 100 kVp ed il rivelatore è stato inclinato di 65°:

Detector @ 65° 3x3x10 mm³ Voltage = 100 kVp Current = 0.1 mA

Fig. 11. Confronto tra lo spettro acquisito con lo schermo di Piombo e senza tale schermo.

Dal confronto con lo spettro in cui non è stato inserito lo schermo di Piombo, possiamo notare che l'entità della coda a basse energie rimane quasi immutata mentre cala l'intensità ad energie maggiori. Diverse ipotesi sono state avanzate per giustificare la coda a basse energie, che potrebbe essere generata da:

- 1. contributo dei fotoni primari:
 - 1.1. fotoni di bassa energia presenti nel fascio primario;
 - 1.2. il rumore della catena elettronica potrebbe seguire una relazione lineare con l'intensità del fascio;
- 2. contributo dei fotoni diffusi:
 - 2.1. dal rivelatore;
 - 2.2. dal collimatore;
 - 2.3. dai materiali adiacenti il rivelatore;
 - 2.4. dai materiali all'esterno della scatola.

6. Allineamento dell'asse del collimatore dello spettrometro con l'asse del fascio del generatore di raggi X

L'allineamento dell'asse del collimatore con l'asse del fascio emesso dal generatore di raggi X rappresenta una criticità nell'uso dello spettrometro. Una procedura di facile utilizzo consiste nel fissare un laser alla superficie dello spettrometro tramite un canotto troncoconico. Nei laboratori del Tesre il canotto è stato fissato in modo che l'asse del collimatore coincidesse con l'asse del laser. Presso il Servizio di Fisica Sanitaria del Sant'Orsola lo spettrometro è stato collocato su un piano triangolare dotato di viti micrometriche poste ai vertici, grazie alle quali si può variare l'inclinazione dello spettrometro. Per una centratura preliminare è stato sfruttato lo spot luminoso del generatore che viene utilizzato per individuare la zona da irraggiare, poi per una centratura più accurata, agendo sulle viti micrometriche, si è sfruttata la riflessione della luce del laser sullo specchio di cui è dotato il generatore del Sant'Orsola per rendere parallelo l'asse del laser con l'asse del fascio X. Il laser è stato poi rimosso per scoprire la finestra del collimatore. Si è notato, però, che lo specchio non era perfettamente perpendicolare al fascio X.

Per verificare la fattibilità di questo metodo, la centratura è stata ripetuta 3 volte ottenendo il seguente risultato:

Detector @ 65° 3x3x10 mm³ Voltage = 120 kVp Current = 0.1 mA

Fig. 12. Confronto tra spettri acquisiti operando diverse centrature.

La prima e la terza centratura forniscono spettri coincidenti, quindi la procedura è ripetibile.

7. Test con sorgenti

Il rivelatore, infine, è stato testato con la sorgente di ⁵⁷Co per verificarne il funzionamento dopo l'utilizzo sotto il fascio del generatore di raggi X. Il rivelatore è stabile poiché le sue prestazioni non sono degradate come possiamo notare dal grafico seguente:

Detector @ $65^{\circ} 3x3x10 \text{ mm}^{3}$ Source = 57° Co Live Time = 600 sec

Fig. 13. Spettri di ⁵⁷Co acquisiti nelle medesime condizioni sperimentali prima e dopo l'irraggiamento con il generatore di raggi X.

Appendice A

Nella seguente tabella sono riportate per ogni misura acquisita:

- ✓ file name;
- \checkmark modalità;
- ✓ corrente del generatore;
- ✓ tensione del generatore di raggi X;
- ✓ distanza fuoco-piattaforma di appoggio del dispositivo;
- ✓ angolo d'inclinazione del rivelatore;
- ✓ tempo d'acquisizione.

nome file	corrente (mA)	tensione (kVp)	distanza (cm)	angolo (°)	modalità	tempo d'acquisizione (sec)	note
co1.s0				90	Sorgente	600	Co-57 n. 13
co2.s0				87	Sorgente	300	Co-57 n. 13
co3.s0				65	Sorgente	600	Co-57 n. 13
co4.s0	0.1	100	180	65	Scopia umana	31	Fascio raggi X
co5.s0	0.2	100	180	65	Scopia umana	34	Fascio raggi X
co6.s0	0.3	100	180	65	Scopia umana	30	Fascio raggi X
co7.s0	0.5	100	180	65	Scopia umana	10	Fascio raggi X
co8.s0	0.5	100	180	75	Scopia umana	10	Fascio raggi X
co9.s0	0.1	120	180	75	Scopia umana	10	Fascio raggi X
co10.s0	0.1	120	180	75	Scopia umana	30	Fascio raggi X
co11.s0	0.1	120	180	87	Scopia umana	20	Fascio raggi X
co12.s0	0.1	120	180	80	Scopia umana	30	Fascio raggi X
co13.s0	0.1	120	180	65	Scopia umana	30	Fascio raggi X
co14.s0	0.1	120	180	0	Scopia umana	30	Fascio raggi X
co15.s0	0.1	120	180	60	Scopia umana	30	Fascio raggi X
co16.s0	0.1	120	180	70	Scopia umana	30	Fascio raggi X
co17.s0	0.1	100	180	70	Scopia umana	30	Fascio raggi X
co18.s0	0.1	100	180	75	Scopia umana	30	Fascio raggi X
co19.s0	0.1	100	180	80	Scopia umana	30	Fascio raggi X
co20.s0	0.1	100	180	60	Scopia umana	30	Fascio raggi X
co21.s0	0.1	100	180	0	Scopia umana	30	Fascio raggi X
co22.s0	0.1	70	180	0	Scopia umana	30	Fascio raggi X
co23.s0	0.1	70	180	60	Scopia umana	30	Fascio raggi X
co24.s0	0.1	70	180	65	Scopia umana	30	Fascio raggi X
co25.s0	0.1	70	180	70	Scopia umana	30	Fascio raggi X
co26.s0	0.1	70	180	75	Scopia umana	30	Fascio raggi X
co27.s0	0.1	70	180	80	Scopia umana	30	Fascio raggi X
co28.s0	0.1	100	180	65	Scopia umana	30	Nuova centratura
co29.s0	0.1	100	180	65	Scopia umana	30	Schermo Pb
co30.s0	0.1	120	180	65	Scopia umana	30	Fascio raggi X
co31.s0	0.1	120	180	65	Scopia umana	30	Nuova centratura
co32.s0				65	Sorgente	600	Co-57 n. 13

Tabella 5. Elenco delle misure effettuate presso il Servizio di Fisica Sanitaria del Policlinico Universitario Sant'Orsola di Bologna.