Spectroscopic characterization of two CdZnTe Multipixel Detectors in an eV Multi Pix 16 Channel ASIC Evaluation System

N. Auricchio, J. B. Stephen, E. Caroli, A. Donati, G. Landini, F. Schiavone, G. Ventura, F. Frontera, A. Basili, T. Franceschini

Istituto di Astrofisica Spaziale e Fisica Cosmica Sezione di Bologna

Internal Report n. 387

Date: 03/02/04 page: 2/41

Ref:R P

Issue: 1

TABLE OF CONTENTS

Summary

- 1. Introduction
- 2. Experimental set-up
- 3. CdZnTe Detector Calibration
 - 3.1 Analysis of the spectra
 - 3.2 Signal to noise ratio at different gain values
 - 3.3 Shaping time at different gain values
 - 3.4 Pixel Spectra
 - 3.5 Gain and offset derivation method
 - 3.5.1 Gain 200
 - 3.5.2 Gain 50
- 4. Detector performance evaluation
 - 4.1 Pulse amplitude
 - 4.2. Energy Resolution
 - 4.3. Peak to valley ratio
 - 4.4. Relative Detection Efficiency
 - 4.5 Energy threshold
 - 4.6. Stability of P51134 detector
- 5. Conclusions
- Annex 1 Measurement Logbook
- Annex 2 Fitting models

Summary

In this report we present the results of a detailed spectroscopic characterization study of two CdZnTe multipixel detectors included in an eV Multi Pix 16 channel ASIC Evaluation System. The measurements have been carried out using a standard electronic chain. The purpose of this study is to investigate the spectral performances of every pixel and the uniformity of the detectors.

1. Introduction

Why CdTe and CdZnTe detectors?

Semiconductor detectors have long been used as gamma-ray and x-ray spectrometers. The materials that provide the best efficiency and energy resolution require cryogenic cooling for their operation. This places considerable constraints on the application of these materials for space environments. In the last few years several semiconductor materials have emerged that allow room temperature operation. Unfortunately the technology for producing these crystals is not yet mature and they still have significant shortcomings such as poor carrier transport proprieties and non-uniformity. These parameters limit both the maximum active volume that can be utilized, which constrains the radiation absorption efficiency, and the energy resolution achievable.

Cadmium Zinc Telluride (CdZnTe) is one of the most promising of the room temperature semiconductor detectors for gamma-ray detection. The high-density (5.8 g cm⁻³) and the high atomic number of the materials (48,30, 52) give a high detection efficiency for gamma rays. Moreover CZT has a high resistivity and low leakage current which is favorable for low noise applications. However, incomplete charge collection due to poor charge transport properties of these materials degrades the energy resolution and lowers the effective photopeak efficiency for gamma rays. The properties of CdTe and CZT semiconductor materials are reported in following table in comparison with those of traditional materials:

	Si	Ge	CdZnTe	CdTe
Atomic Number Z	14	32	48 - 30 - 52	48 - 52
Density $(g \cdot cm^{-3})$	2.33	5.32 (77 K)	≈ 6.0	6.06
Bandgap (eV)	1.12	0.74 (77 K)	1.5 - 2.2	1.47
Energy for electron/hole pair (eV)	3.61	2.98 (77 K)	5.0	4.43
Resistivity ($\Omega \cdot cm$)	2.3 • 10 ⁵	47	10 ¹¹	$2 \div 3 \bullet 10^9$
$(\mu\tau)_{\rm e} ({\rm cm}^2 \cdot {\rm V}^{-1})$	4.5	3.9	1 • 10 ⁻³	10-3
$(\mu\tau)_h (cm^2 \cdot V^{-1})$	1.8	1.8	6 • 10 ⁻⁶	0.8 • 10 ⁻⁴

Table 1.	The r	properties	of	semiconductor	materials.
I HOIC II	1110	JI OP CITICS	U 1	Senneonaaetoi	materiald

Why CdTe and CdZnTe detectors for Hard X-ray and gamma ray astrophysics?

CZT is a room temperature operating semiconductor well suited for high energy X-ray astronomy: this detector is ideal for both X-ray all-sky survey missions as well as focal plane detectors in X-ray focusing optics missions. We are studying the application of position sensitive detectors made of this material for polarization measurements in hard X- and soft γ -ray astronomy. A recent result from the RHESSI solar observatory suggests that, at least in gamma-ray bursts, high energy emission may be strongly polarised. In July 2002 the POLCA (POLarimetry with Cadmium telluride Array) experiment was tested at the European Synchrotron Research Facility at Grenoble, France, where monochromatic beams (almost 100% linearly polarised) at 100, 300 and 400 keV have been utilised to irradiate CdTe arrays containing elements of thickness between 3 and 8 mm. The next step concerns the irradiation, with a complete energy coverage over the 100-1000 keV

range, of a CdZnTe matrix composed of 4 pixellated detectors, in order to increase the active area and allow a study of polarisation efficiency (Q-factor) against detector dimensions. Each detector contains 16 elements (4x4), that are 5 mm in thickness. Two of these detectors have been calibrated and the results reported here.

2. Experimental set-up

This technical note describes the work performed at IASF/CNR – Sezione Bologna in the period 2003 December-2004 January on an eV Multi Pix 16 channel ASIC Evaluation System.

The eV Multi Pix 16 channel ASIC Evaluation System is designed to give the user a platform to evaluate the eV Products' 16 channel ASIC paired with a 4x4 channel CdZnTe detector at room temperature. This system is capable of sensing X-rays or gamma rays in the energy range of 10 keV to 1.5 MeV. The thickness of the detector included with this device is 5 mm, while the lateral dimensions are 10.6x10.6 mm², the pixel size is 1.8 x 1.8 mm² (2 mm pitch) +0.5 guard ring.

The ASIC in this unit accepts an input from either the CdZnTe detector or an external pulser and produces one unipolar shaped signal for each photon detected or pulse injected. The ASIC channel outputs have ~ 300 mV of DC offset and the operating voltage is 3.0 V. The detector bias voltage is 520 V.

Other features of the unit include:

- An on-board adjustable High Voltage Bias Supply.
- A 100:1 Voltage Divided High Voltage Monitor BNC Connector.
- DIP Switch control of ASIC gain and peaking time.
- Ability to operate from a single +12 V power supply.
- Test pulse connection through a BNC Connector.
- DIP Switch control of the channel connected to the test input injection capacitor.
- BNC connectors for CZT Channel Outputs.
- 20-pin ribbon cable connector for access to all 16 ASIC channel outputs.

Adjustable High Voltage Power Supply

The eV Multi Pix 16 channel ASIC Evaluation System is equipped with an on board High Voltage Power Supply that is capable of biasing the CZT detector from -330 V to -600 V (adjust the potentiometer as shown in Fig. 1.). The voltage is fixed at 512 V.

Fig.1. The box containing the pixellated CZT matrix: control switches and bias supply adjustment.

HV monitor

The HV monitor connection point provides a 1000:1 reduction in the actual High Voltage Power Supply output voltage level so a measurement of -0.45 V at the BNC corresponds to a bias level of -450 V.

Power Supply Connection

The eV Multi Pix 16 Channel ASIC Evaluation System requires a +12 V power supply unit.

Test pulse input Enable

The test pulse input can be attached to the BNC connector as shown in Fig. 2. This input is then routed through a DIP switch as shown in Fig. 1.

If this switch is in the ON position the test pulse is fed to the on chip 100 fF test pulse injection capacitor. In the OFF position the test pulse is not routed to the ASIC therefore no output pulse will be seen.

Fig. 2. Input and output connections.

Test channel address Control

The test channel address control is found on the DIP switch (see Fig. 1). This switch determines which ASIC channel receives the test pulse input signal from the external BNC connection.

BNC connectors for CZT Outputs

The BNC connectors shown in Fig. 2 allow access to the 4 ASIC channels that are connected to the 4 pixels on the CZT detector. The signal on these connectors will be a positive unipolar shaped pulse that can be directly connected to a MCA, ADC, counter board or other data acquisition system. These outputs can drive a load of 1 Kohm || 200 pF.

20-Pin ribbon cable connector

The 20-Pin ribbon cable connector shown in Fig. 2. allows access to the output of all 16 ASIC channels. This is useful when testing a custom designed 16 pixel detector. The ribbon cable can be used to directly wire the outputs to a customer specific data acquisition system.

ASIC gain and peaking time

The 16 channel ASIC is capable of amplifying an input signal by 4 gain values: 200, 100, 50, 33. These are controlled by internal DIP switches as shown in Fig. 3.

The ASIC provides 4 different peaking time values in order to shape the input signal: 0.6, 1.2, 2.4, 4.0 μ s. These are controlled by internal DIP switches as shown in Fig. 3. The peaking time is correlated with the shaping time by following relation:

Peaking time = $\mathbf{n} \times \boldsymbol{\tau}$ where: $\boldsymbol{\tau}$ = Shaping time \mathbf{n} = number of stages of integration.

The schematic drawing of the control switches is illustrated in Fig. 3 and their position is reported in table 2 and 3:

Fig. 3. Control switches.

Table 2. Switch Position for gain control	Table 2	. Switch	Position	for	gain	control
--	---------	----------	----------	-----	------	---------

Gain (mV/fC)	Switch 6	Switch 7
200	Off	Off
100	On	Off
50	Off	On
33	On	On

Table 3. Switch Position for Peaking Time control	ol.
---	-----

Peaking Time (µs)	Switch 2	Switch 3
0.6	Off	Off
1.2	On	Off
2.4	Off	On
4.0	On	On

A schematic diagram of the experimental configuration employed for testing the multipixel detector is sketched in Fig. 4. The modules used are:

- eV Multi Pix 16 channel ASIC Evaluation System;
- AC coupled Linear Amplifier home made to eliminate the DC offset and to amplify the voltage level of ~ 4 times;
- Ortec Linear Gate and Stretcher mod. 542;
- MCA Aptec 3000.

3. CdZnTe Detector Calibration

To make measurements using CZT detector all test pulser capabilities were disabled . This provides the lowest noise measurement and therefore the best results. The measurements were performed at various gains and with different uncollimated radioactive sources (²⁴¹Am, ⁵⁷Co, ¹³⁷Cs), placed over the radiation window. The ASIC output shaped pulses were connected from every pixel to the AC coupled linear amplifier and applied to an MCA (see Fig. 4), via LGS. The aim of these measurements is to evaluate for every pixel the gains and offsets of the pulse-height, the energy resolution, the charge collection efficiency (centroid position), the peak to valley ratio and finally the uniformity. Some measurements have been performed with collimated ⁵⁷Co and ¹³⁷Cs beams ($\phi = 3.5$ mm and 5 mm) to evaluate the possibility of carrying out collimated measurements but we have used only the ⁵⁷Co measurements collimated with $\phi = 5$ mm in order to evaluate the optimal shaping time value for different gains. The detectors tested are labelled with the serial numbers **698300**/revision c and **P51134**.

3.1 Analysis of the spectra

The spectra have been analysed using the PeakFit software package (PeakFit v4.0. Peak separation and Analysis Software: User's Manual, Jandel Scientific Software, 1995) in order to obtain several parameters (e.g. efficiency, photopeak pulse amplitude, energy resolution). The main characteristics of the spectra are: a Gaussian photopeak component corresponding to the energy of the incident photons and an asymmetric component caused by trapping effects. The first component has been modelled using a Gaussian distribution and the second was fitted using a typical chromatographic asymmetric function known as a Half-Gaussian Modified Gaussian (see Annex 2).

3.2 Signal to noise ratio at different gain values

Table 4 reports the measured signal to noise ratio. By definition noise is any fluctuation that appears superimposed on a signal source. There are several sources of fluctuations in a measuring system and they affect the energy resolution with broadening of the full energy photopeak:

$$FWHM_{TOT} = \sqrt{FWHM_{statistical}^{2} + FWHM_{electronic}^{2} + \dots}$$

It is worth noticing that 200 is the gain that gives the best signal to noise ratio, as shown in table.

Table 4. Signal to hoise ratio.									
Gain ASIC	Signal at 60 keV (mV)	Noise (mV)	Signal/Noise						
33	60	10	6.0						
50	84	12	7.0						
100	170	15 ÷ 20	11.3 ÷ 8.5						
200	340	$20 \div 30$	13.0 ÷ 17.0						

Table 4. Signal to noise ratio.

3.3 Shaping time at different gain values

A set of measurements has been carried out, irradiating detector **698300** with a ⁵⁷Co source, at gains of 50, 100, 200 and varying the shaping time from 0.6 μ s to 2.4 μ s to evaluate the optimum value for each gain. The output signal of some pixels, that were selected as having lower energy resolution values, have been connected to an MCA. Two basic indicators of the spectra quality, the centroid position and the FWHM, have been derived, and the centroid variation and the energy resolution have been calculated (Table 5). The centroid variation is defined in this way:

 $\Delta\%$ C = (Cx-C_{max})/C_{max} × 100% where Cmax = overall centroid maximum value.

This parameter takes the charge collection efficiency changes into consideration. The choice of the optimal peaking time value depend on trade-off considerations: first of all the energy resolution should be the best achievable, secondly the charge collection efficiency loss should be minimized.

	Gain 50								
	Peaking '	Γime = 0.6 μs	Peaking	Γime = 1.2 μs	Peaking Time = 2.4 μs				
Pixel	Δ% C	Energy Resolution (%)	Δ% C	Energy Resolution (%)	Δ% C	Energy Resolution (%)			
2	-18.94	11.54	-5.33	8.86	-3.62	9.64			
6	-16.08	10.65	-3.59	9.16	-3.67	9.78			
11	-14.03	9.88	-0.90	9.36	0.00	9.49			
15	-17.09	10.96	-4.19	9.90	-3.69	10.35			
	Gain 100								
	Peaking	Time = 0.6 μs	Peaking	Γime = 1.2 μs	Peaking	Γime = 2.4 μs			
Pixel	Δ% C	Energy Resolution (%)	Δ% C	Energy Resolution (%)	Δ% C	Energy Resolution (%)			
2	-10.54	4.71	-3.24	4.42	-1.57	4.70			
6	-10.88	4.40	-3.79	4.26	-3.23	4.41			
11	-9.36	4.37	-1.43	4.07	0.00	4.24			
15	-11.01	4.76	-3.21	4.23	-1.93	4.71			
			Gain 2	00					
	Peaking '	Time = 0.6 μs	Peaking	Γime = 1.2 μs	Peaking	Γime = 2.4 μs			
Pixel	Δ% C	Energy Resolution (%)	Δ% C	Energy Resolution (%)	Δ% C	Energy Resolution (%)			
2	-7.36	4.74	-3.30	3.31	-2.05	3.52			
6	-8.07	4.55	-2.85	3.14	-0.94	3.20			
11	-7.33	4.64	-1.81	3.22	-0.16	3.29			
15	-7.70	4.18	-2.30	3.69	0.00	3.56			

Table 5. Δ % C and energy resolution for different peaking time values.

It is noticeable that the better peaking time value is 12 μ s for all the gain value.

3.4 Pixel Spectra

The spectra of all pixels are shown in the following figures when they are irradiated with several radioactive sources (⁵⁷Co, ²⁴¹Am, ¹³⁷Cs).

Fig. 5. ⁵⁷Co spectra of detector 698300 pixels both before and after energy calibration.

Fig. 6. ²⁴¹Am spectra of detector 698300 pixels both before and after energy calibration.

The amplifier gain used in measurements plotted until now is 200, because at this value the signal to noise ratio is better, while that employed in order to obtain the spectra by the ¹³⁷Cs source is 50, because at 100 and 200 the spectrum is out of range.

Fig. 7. ¹³⁷Cs spectra of detector 698300 pixels both before and after energy calibration.

The spectra of each pixel are shown in following figures when they are irradiated with several radioactive sources (⁵⁷Co, ²⁴¹Am, ¹³⁷Cs). The same considerations are effective about the gain value.

Fig. 8a. ⁵⁷Co spectra of detector 698300 pixels after energy calibration.

Fig. 8b. ⁵⁷Co spectra of detector P51134 pixels after energy calibration.

Fig. 9a. ²⁴¹Am spectra of detector 698300 pixels after energy calibration.

Fig. 9b. ²⁴¹Am spectra of detector P51134 pixels after energy calibration.

Fig. 10. ¹³⁷Cs spectra of detector 698300 pixels after energy calibration.

It is possible to note that:

- only two pixels are noisy, 0 and 13 in 698300; 0,5 and 15 in P51134;
- the uniformity of the response of each pixel, as defined by the distribution of the full energy peak centroid channel and of the relative photopeak efficiency is quite homogeneous;
- in the 241 Am spectrum we can observe the lines at ~ 13.95, 17.75 and 26.34 keV;
- in the 57 Co spectrum we can observe the characteristic X rays at ~ 72 and 75 keV of the Pb cover;
- in the ¹³⁷Cs spectrum we can observe the backscatter peak at \sim 186 keV in accordance with the theoretical value of 184.32 keV.

3.5 Gain and offset derivation method

3.5.1 Gain 200

The technique usually used to derive the gain and the offset for each pixel requires measurements with good statistics (~ $5 \, 10^4$ counts per pixel) and at least two lines well separated in the spectrum. For high-energy lines, the peak efficiency is low and the first of the above requirements implies very strong sources or very long measurements. Neither of these conditions is desirable. The ⁵⁷Co source provides a satisfactory compromise with 108 keV between two lines (14.41 and 122.06 keV) and an efficiency close to 95% for the 122 keV line. In the following table a coarse determination of the pulse height obtained using **Aptec** software is reported together with energy resolution values which are typical for this type of detector. The centroid values at 14 and 122 keV have been used to energy calibrate the ⁵⁷Co spectrum and thereby evaluate the gain and offset. In the last column of table 6 we have reported the offset expressed in channels:

$$offset(channel) = \frac{-offset(keV)}{gain}$$

Pixel	Centroid	Energy	Centroid	Energy	Gain	Offset	Offset
	at 14 keV	Resolution	at 122 keV	Resolution	(keV/ch)	(keV)	(channel)
	(channel)	at 14 keV (%)	(channel)	at 122 keV (%)			
0	47.12	15.78	503.07	3.68	0.236	3.29	-13.93
1	43.07	19.83	495.44	3.20	0.238	4.16	-17.50
2	45.03	24.77	498.44	3.29	0.237	3.72	-15.68
3	46.43	27.52	503.62	4.15	0.235	3.48	-14.78
4	37.80	27.36	491.32	3.51	0.237	5.44	-22.92
5	47.46	23.04	496.61	4.45	0.240	3.04	-12.68
6	46.51	19.66	500.49	2.81	0.237	3.39	-14.28
7	46.68	22.08	492.72	3.71	0.241	3.15	-13.04
8	47.37	23.70	506.36	4.48	0.235	3.30	-14.09
9	49.16	24.53	507.41	3.52	0.235	2.86	-12.19
10	42.92	23.77	495.89	3.93	0.238	4.21	-17.73
11	41.29	24.28	500.56	2.81	0.234	4.74	-20.20
12	45.94	21.65	500.76	3.36	0.237	3.54	-14.95
13	45.17		501.93	3.31	0.236	3.77	-15.99
14	44.86	24.67	494.63	3.50	0.239	3.68	-15.36
15	49.96	19.99	506.16	3.14	0.236	2.63	-11.13

Table 6a. Centroid, energy resolution @ 14 and 122 keV; offset and gain values for 698300.

The average of these values is: gain = 0.237 keV/channel, offset = 3.65 keV.

The average of the offset value expressed in channel is: offset = - 15.40 channel.

The	dispersion	of the g	ains and	offsets	is about	1% and	19 %	from t	the mean	value.
	1	6	,				-			

Pixel	Centroid	Energy	Centroid	Energy	Gain	Offset	Offset
	at 14 keV	Resolution	at 122 keV	Resolution	(keV/ch)	(keV)	(channel)
	(channel)	at 14 keV (%)	(channel)	at 122 keV (%)			
0	48.41	14.59	498.04	3.52	0.239	2.82	-11.80
1	43.52	21.22	485.34	4.01	0.244	3.81	-15.63
2	46.03	21.39	490.13	3.31	0.242	3.26	-13.43
3	46.98	20.40	494.76	4.32	0.240	3.12	-12.97
4	38.98	27.34	483.20	3.75	0.242	4.97	-20.49
5	46.69		484.52	3.76	0.246	2.93	-11.93
6	47.03	21.33	491.31	3.38	0.242	3.02	-12.46
7	47.14	21.67	484.12	4.02	0.246	2.80	-11.36
8	49.04	21.41	497.49	3.28	0.240	2.64	-11.01
9	48.65	18.25	494.47	3.69	0.241	2.67	-11.04
10	43.88	19.17	485.45	3.38	0.244	3.72	-15.24
11	42.86	22.73	493.67	3.74	0.239	4.18	-17.50
12	46.23	15.32	488.16	3.92	0.244	3.15	-12.94
13	49.46	21.87	499.10	3.81	0.239	2.57	-10.75
14	46.04	16.41	485.86	3.38	0.245	3.14	-12.84
15	51.03	18.86	498.05	4.05	0.241	2.12	-8.82

Table 6b. Centroid, energy resolution @ 14 and 122 keV; offset and gain values for P51134.

The average of these values is: gain = 0.242 keV/channel, offset = 3.18 keV. The average of the offset value expressed in channel is: offset = - 13.14 channel. The dispersion of the gains and offsets is about 1% and 22 % from the mean value.

In following tables a coarse determination of the pulse height at 59.54 keV, obtained using Aptec software, is reported together with energy resolution values at 59.54 keV, which are typical for this type of detector. The centroid values at 59.54 and 122 keV have been used to energy calibrate the ²⁴¹Am spectrum and therefore evaluate the gain and offset.

Pixel	Centroid at 59.54	Energy Resolution	Gain	Offset	Offset
	keV (channel)	at 59.54 keV (%)	(keV/channel)	(keV)	(channel)
0	235.99	5.36	0.234	4.30	-18.35
1	228.50	5.54	0.234	6.02	-25.71
2	231.43	5.20	0.234	5.35	-22.86
3	235.60	6.00	0.233	4.58	-19.65
4	223.65	5.91	0.234	7.30	-31.26
5	233.84	7.52	0.237	4.18	-17.60
6	231.26	5.02	0.234	4.71	-20.11
7	237.37	5.90	0.239	4.24	-17.74
8	238.14	6.24	0.232	4.37	-18.79
9	238.14	5.97	0.232	4.25	-18.29
10	229.43	6.55	0.235	5.71	-24.34
11	231.41	4.89	0.232	5.78	-24.90
12	233.54	5.41	0.234	4.90	-20.94
13	235.25	5.12	0.234	4.39	-18.71
14	231.37	5.96	0.237	4.59	-19.33
15	237.92	4.93	0.233	4.09	-17.53

Table 7a. Centroid position, energy resolution @ 59.54 keV; offset and gain values for 698300.

The average of these values is: gain = 0.234 keV/channel offset = 4.92 keV offset = -21.01 channel The dispersion of the gains and offsets is shout 1% and 18 % from the mean value

The dispersion of the gains and offsets is about 1% and 18 % from the mean value.

Pixel	Centroid at 59.54	Energy Resolution	Gain	Offset	Offset
	keV (channel)	at 59.54 keV (%)	(keV/channel)	(keV)	(channel)
0	235.22	5.10	0.238	3.586	-15.07
1	225.83	5.75	0.241	5.136	-21.32
2	230.07	4.91	0.240	4.231	-17.60
3	234.10	5.66	0.240	3.390	-14.14
4	222.54	5.95	0.240	6.163	-25.70
5	229.49	6.35	0.245	3.282	-13.39
6	231.60	5.01	0.241	3.786	-15.73
7	229.33	6.17	0.245	3.266	-13.31
8	235.24	5.18	0.238	3.461	-14.52
9	234.08	5.88	0.240	3.336	-13.89
10	226.72	5.64	0.242	4.755	-19.68
11	230.47	4.23	0.238	4.793	-20.18
12	229.70	5.81	0.242	3.979	-16.45
13	236.55	5.30	0.238	3.213	-13.49
14	229.29	5.39	0.244	3.665	-15.04
15	236.83	5.46	0.239	2.856	-11.93

Table 7b. Centroid posit	tion, energy resolution	@ 59.54 keV; offset at	nd gain values for P51134
--------------------------	-------------------------	------------------------	---------------------------

The average of these values is: gain = 0.241 keV/channel offset = 3.93 keV offset = -16.34 channelThe dispersion of the gains and offsets is about 1% and 22 % from the mean value.

3.5.2 Gain 50

In table 8 a coarse determination of the pulse height at 122 keV and 662 keV, obtained using Aptec software, is reported together with energy resolution values at 662 keV, which are typical for this type of detector. The centroid values at 122 and 662 keV have been used to energy calibrate the ¹³⁷Cs spectrum and thereby evaluate the gain and offset. The average of these values is:

gain = **0.936** keV/channel offset = **76.22** keV offset = **-81.44** channel

The dispersion of the gains and offsets is about 1% and 2% from the mean value.

The offset value, in this case, is very large because the Linear Gate and Stretcher had a voltage offset, that was eliminated when the gain was increased at 200, therefore the previous measurements are not affected by this Linear Gate and Stretcher offset.

Pixel	Centroid	Centroid	Energy Resolution	Gain	Offset	Offset
	at 122 keV	at 662 keV	at 662 keV (%)	(keV/ch)	(keV)	(channel)
	(channel)	(channel)				
0	50.46	629.67	3.62	0.932	75.05	-80.57
1	45.63	627.78	2.35	0.927	79.77	-86.07
2	48.45	633.00	2.27	0.923	77.34	-83.79
3	49.21	622.40	3.05	0.941	75.74	-80.46
4	44.8	617.52	2.75	0.942	79.85	-84.76
5	50.07	621.31	3.31	0.945	74.77	-79.16
6	49.38	623.04	1.38	0.941	75.61	-80.39
7	49.14	613.18	3.76	0.957	75.05	-78.46
8	50.24	bad	bad	0.936	75.06	-80.24
9	50.31	625.30	1.99	0.938	74.85	-79.76
10	47.41	621.69	4.87	0.940	77.52	-82.50
11	50.66	635.76	1.43	0.922	75.35	-81.71
12	49.45	631.13	1.84	0.928	76.19	-82.14
13	49.23	631.89	2.7	0.926	76.47	-82.58
14	49.97	622.10	2.48	0.943	74.93	-79.46
15	49.13	624.32	1.90	0.938	75.97	-80.99

Table 8. Centroid position, energy resolution @ 122 and 662 keV; offset and gain values.

4. Detector performance evaluation.

Five parameters must be considered to completely estimate the quality of detector: pulse amplitude corresponding to the photopeak, the energy resolution, the peak to valley ratio, the efficiency and the energy threshold.

4.1 Pulse amplitude

The pulse amplitude corresponding to the photopeak is directly related to the charge collection efficiency $\eta(x)$, function of the depth of interaction. The relationship obtained for a uniform electric field is given by the Hecht equation:

$$\eta(\mathbf{x}) = \lambda_e/d \left[1 - \exp((\mathbf{x} \cdot \mathbf{d})/\lambda_e)\right] + \lambda_h/d \left[1 - \exp(-\mathbf{x}/\lambda_h)\right]$$

where d is the inter-electrode distance and λ is the ($\mu\tau$ V/d) value for electrons and holes, that is the mean free path of electrons and holes, when gamma rays are irradiated from the cathode face.

We have calculated the Relative Photopeak Position using PeakFit (see par. 3.1) software and his error as follows:

$$RPP = \frac{c_x - offset}{c_0 - offset} = \frac{C_x}{C_0}$$
$$\sigma_{see} = \sqrt{\left[\left(\frac{\partial RPP}{\partial C_x} \sigma_{c_s} \right)^2 + \left(\frac{\partial RPP}{\partial C_0} \sigma_{c_o} \right)^2 \right]}$$

where:

 C_x = photopeak centroid of the pixel x (c_x) - offset; C_0 = photopeak centroid of the pixel 0 (c_0) - offset. σ_{cx} , σ_{c0} = this error is obtained by fitting procedure;

 σ_{Cx} , σ_{C0} = this error includes the error associated to the offset. The error associated to the offset has been evaluated as follows:

$$\sigma_{offset} = \left| \frac{offset}{c_x} \right|$$

The behaviour of the relative photopeak position is plotted in Fig. 11.

Fig.11a. The uniformity of pixel full energy peak centroid for 698300.

Fig.11b. The uniformity of pixel full energy peak centroid for P51134.

It is worth noticing that the uniformity of the relative photopeak position is quite homogeneous: the standard deviation from the mean value is about 1% for both multipixels.

Ref:R P Issue: 1 Date: 03/02/04 page: 22/41

4.2 Energy Resolution

In pulse height spectroscopy, the energy resolution of a detector is usually defined as the full width at half maximum (FWHM) of a gamma ray photopeak:

Energy Resolution = $\frac{FWHM}{Centroid - offset} \times 100$

the formula above can be rewritten as:

$$R = \frac{FWHM}{C} \times 100$$

The error associated to the energy resolution has been evaluated as follows:

$$\sigma_{R} = \sqrt{\left[\left(\frac{\partial R}{\partial FWHM}\sigma_{FWHM}\right)^{2} + \left(\frac{\partial R}{\partial C}\sigma_{c}\right)^{2}\right]}$$

The same considerations above are effective about the centroid and its error. The behaviour of the energy resolution is reported in Fig. 12.

Fig.12a. Energy resolution of each pixel at different energies for 698300.

Fig.12b. Energy resolution of each pixel at different energies for P51134.

A summary of values defined above is reported in the following tables for each pixel with the average value.

# Pixel	FWHM	Centroid	Energy	FWHM	Centroid	Energy
	(keV) at	(channel)	Resolution at	(keV) at	(channel)	Resolution at
	14 keV	at 14 keV	14 keV (%)	122 keV	at 122 keV	122 keV (%)
0	2.12	47.28	14.69	3.34	504.75	2.73
1	2.57	42.79	17.94	3.36	496.31	2.75
2	2.83	44.77	19.72	3.17	499.30	2.59
3	3.33	46.24	23.17	3.81	505.27	3.11
4	2.96	37.55	20.61	3.45	492.46	2.82
5	3.92	47.94	27.01	4.15	498.84	3.39
6	2.73	46.11	19.08	2.94	501.21	2.41
7	3.20	46.37	22.30	3.64	494.16	2.98
8	2.93	47.51	20.25	3.74	509.09	3.04
9	3.32	49.40	22.95	3.58	508.34	2.93
10	2.89	42.55	20.17	3.83	497.44	3.13
11	2.68	41.22	18.59	3.03	501.25	2.48
12	2.53	45.91	17.56	3.19	501.98	2.61
13				3.35	502.90	2.74
14	2.84	44.97	19.64	3.51	495.82	2.87
15	2.57	49.73	17.90	3.14	507.06	2.57
Mean	2.71	45.36	18.85	3.45	501.01	2.82

The spectrum of pixel 13 is too broad for fitting at 14 keV.

#	FWHM	Centroid	Energy	FWHM	Centroid	Energy
Pixel	(keV) at	(channel)	Resolution at	(keV) at	(channel)	Resolution at
	59.54 keV	at 59.54 keV	59.54 keV (%)	662 keV	at 662 keV	662 keV (%)
0	2.79	236.03	4.68	12.69	632.15	1.91
1	2.77	228.81	4.54	6.91	630.67	1.04
2	2.48	232.03	4.16	7.69	634.70	1.16
3	3.21	235.78	5.39	8.03	626.05	1.21
4	2.93	223.80	4.92	8.77	620.23	1.32
5	4.18	233.55	7.00	10.73	624.73	1.61
6	2.58	234.07	4.32	5.90	623.88	0.89
7	3.29	231.42	5.20	11.77	616.43	1.77
8	2.99	237.99	5.00	19.63	628.12	2.96
9	3.15	238.45	5.29	8.05	626.37	1.21
10	3.26	229.56	5.47	18.65	624.71	2.81
11	2.61	231.46	4.38	6.25	636.45	0.94
12	2.79	233.71	4.68	7.07	632.37	1.07
13	2.87	235.41	4.82	8.16	634.59	1.23
14	2.72	232.02	4.56	8.04	624.66	1.21
15	2.60	238.02	4.36	6.77	625.88	1.02
Mean	2.95	233.26	4.92	9.69	627.62	1.46

I able 1	II. F W HM, cer	itrola position an	a energy resolution	1 at 39.54 and	1 122 KeV for P	51154.
#	FWHM	Centroid	Energy	FWHM	Centroid	Energy
Pixel	(keV) at	(channel)	Resolution at	(keV) at	(channel)	Resolution at
	59.54 keV	at 59.54 keV	59.54 keV (%)	122 keV	at 122 keV	122 keV (%)
0	2.69	235.46	4.52	3.36	499.20	2.75
1	2.95	226.12	4.95	3.67	486.88	2.99
2	2.62	230.22	4.40	3.18	491.21	2.60
3	2.88	234.57	4.83	4.01	496.20	3.27
4	2.79	223.29	4.67	3.48	484.86	2.84
5	3.66	229.58	6.15	3.55	486.56	2.90
6	2.63	231.79	4.42	3.31	492.33	2.71
7	3.19	229.71	5.35	3.67	485.81	3.00
8	2.88	235.44	4.84	3.12	499.20	2.55
9	2.91	234.60	4.87	3.74	495.58	3.06
10	2.74	227.50	4.58	3.25	486.66	2.65
11	2.55	231.30	4.27	3.48	495.15	2.84
12	2.85	230.37	4.78	3.68	489.75	3.00
13	2.72	236.95	4.56	3.33	501.30	2.72
14	2.80	229.62	4.69	3.30	487.28	2.69
15	2.90	237.18	4.87	3.71	500.08	3.02
Mean	2.86	231.48	4.80	3.49	492.38	2.85

17.0 1 1 . 50 54 DE1124

The energy resolution has the same behaviour at 60, 122, 662 keV, whose average value is reported above, while at low energy (14 keV) the curve is different because, being close to the threshold, the errors are very large. The values most deviating from the average have been highlighted.

4.3 Peak to valley ratio

The evaluation of the low-energy tail, due to trapping effects, is important in assessing the quality of the detector. To quantify the tail, the peak-to valley ratio is calculated at several points below the peak. The peak-to-valley ratio is the ratio of the peak counts at the centroid channel, to the channel contents at a point in the spectrum below the peak. The valley is calculated as the average of the 5 channels centred at the following channels: 1) a distance of 2 FWHM from the centroid channel; 2) a distance of 5 FWHM from the centroid channel (see fig. 13). Some quantitative results, concerning this parameter, are reported in table 12a and b for detector 698300.

Peak to Valley Ratio

Fig. 13. Peak to valley calculation.

# Pivel	Peak to valley	Peak to valley ratio	Peak to valley ratio at
	retice at (0 las)	1 Cak to valley fatto	1 can to valley fatto at
	ratio at 60 kev	at 122 KeV	002 Ke V
0	7.55 ± 0.54	4.11±0.24	1.89±0.11
1	9.59±0.76	4.70 ± 0.32	$1.82{\pm}0.11$
2	7.09 ± 0.48	4.61±0.25	$1.90{\pm}0.10$
3	6.31±0.43	4.56±0.27	$1.87{\pm}0.10$
4	8.16±0.65	5.46±0.36	2.25±0.13
5	5.05 ± 0.38	3.15±0.20	$1.80{\pm}0.11$
6	9.30±0.86	6.18±0.46	2.77±0.17
7	6.00±0.41	4.20±0.24	2.01±0.11
8	4.10±0.28	2.79±0.17	1.68±0.12
9	7.46 ± 0.60	$4.99 \pm .033$	2.39±0.13
10	4.14 ± 0.27	3.41±0.21	2.03±0.14
11	9.99±0.73	5.92 ± 0.35	2.56±0.12
12	$8.64{\pm}0.67$	5.00±0.32	2.16±0.12
13	8.18±0.62	4.72±0.030	2.05±0.12
14	5.70±0.39	3.91±.024	1.77 ± 0.10
15	8.15±0.63	4.94±0.32	2.36±0.13
Mean	7.21	4.54	2.08

Table 12a. Peak to valley ratio at 2 FWHM from the centroid.

Table 12b. Peak to valley ratio at 5 FWHM from the centroid.

# Pixel	Peak to valley	Peak to valley ratio Peak to valley ratio	
	ratio at 60 keV	at 122 keV	662 keV
0	16.28±1.65	$8.50{\pm}0.68$	4.40±0.35
1	15.72±1.57	9.67±0.90	3.37±0.25
2	12.79±1.13	9.93±0.77	3.60±0.22
3	13.35±1.29	8.33±0.63	3.47±0.20
4	16.80±1.87	9.91±0.86	4.66±0.35
5	12.43±1.38	5.82±0.47	3.23±0.25
6	14.86±1.71	10.06±0.93	5.05±0.38
7	13.19±1.29	7.96±0.60	4.25±0.31
8	9.94±1.00	5.78 ± 0.48	4.35±0.43
9	16.13±1.84	9.16±0.78	4.71±0.34
10	$11.00{\pm}1.09$	5.58±0.43	3.95±0.35
11	18.27±1.78	11.75±0.95	4.80±0.29
12	18.44 ± 2.04	10.05 ± 0.87	4.45±0.32
13	15.51±1.57	10.03±0.87	3.86±0.28
14	12.27±1.18	7.88±0.65	2.90±0.19
15	15.65±1.62	10.29±0.91	3.86±0.26
Mean	14.54	8.79	4.06

The data analysis demonstrated that pixels 6 and 11 have a better energy resolution and peak to valley ratio, which is not quite uniform for this detector.

4.4. Detection Relative Efficiency

Another important performance characteristic of radiation detector is the efficiency, which is a measure of its ability to detect the gamma rays. Although the concept of detector efficiency appears

IASF- Sez. di Bologna	Ref:R P Issue: 1 Date: 03/02/04 page: 26/41
-----------------------------	--

initially to be very simple, in practice there are ambiguities associated with its determination. It is generally defined as the ratio of the counts in the full energy peak and the source emissions. Since there was not a calibrated source at disposal, we have defined the *normalized counts* as the ratio between the total count in each pixel and the mean value of the total counts in the detector. In the same way the *normalized photopeak area* is defined as the ratio between the counts in the full energy peak (area under the photopeak obtained by fitting procedure) in each pixel and the mean value of the photopeak would correspond to the number of measured events in the detector. In the following figure the behaviour of two efficiencies is shown:

Fig. 14a. Behaviour of the normalized counts and the normalized photopeak area for 698300.

Fig. 14b. Behaviour of the normalized counts and the normalized photopeak area for P51134.

The maximum dispersion of two parameters defined above is about 30% at 14 keV, \sim 15% at 60, 122 and 662 keV for detector 698300 and about 10% for P51134.

4.5. Energy Threshold

The measurements carried out confirm the ASIC specifications about energy threshold, which is $<10 \text{ keV}, \sim 8 \text{ keV}.$

4.6. Stability of P51134 detector

The term polarization is used to refer to any change in the performance of a detector over time. We observed a polarization effect in the CdTe detectors during room temperature operation, that determines a decrease of the electric field effective in the detector volume, mainly due to the space charge created at the deep trapping sites. Consequently the drift velocity of charge carriers reduces and the charge collection times lengthens, increasing the trapping probability. This causes the degradation of the pulse height and shape with run time on continuous operation.

This figure shows a sequence of ⁵⁷Co spectra acquired over a one-week period after applying 512 V. We can observe that there is not a significant variation in FWHM as in the peak position and amplitude.

Fig. 16. Plot of ⁵⁷Co spectra acquired over a 7 days period from P51134 detector. The pixel 8 presents the better energy resolution, while the pixel 5 is noisy at low energy.

An alternative approach to determine the stability of a detector is based upon the evaluation of the ratio named Quality Factor:

 $Q.F. = \frac{P/V}{\% FWHM}$

As is shown in fig. 15, the detector used is stable over time.

Fig. 15. Stability of CZT pixels as a function of the time.

After about 2 month of continuous operation without irradiating the detector, we have noted that the every pixel peak position is increased; we suggest that detrapped charge carriers from levels in the crystal are responsible for this effect.

5. Conclusions

The results of the functional tests are:

- ➢ only the ASIC channel 0 is noisy;
- \blacktriangleright the energy threshold is ~8 keV.

Both tested detectors show very good performances:

- ➤ the uniformity of the photopeak position (gain) is about 1%;
- > the energy resolution is ~ 4.9 % at 60 keV, ~2.9 % at 122 keV and 1.5 % at 662 keV;
- > the uniformity of the energy resolution ($\Delta E/E$) is about 10 % at 60 keV and 8 % at 122 keV;
- the uniformity of the normalized counts and normalized photopeak area ranges between 10 15% at 60, 122 keV for detector 698300 and about 10% for P51134.

IASF-
Sez. di
Bologna

Ref:R P Issue: 1 Date: 03/02/04 page: 30/41

Annex 1 Measurement Logbook						
Version of the logbook of the N		Aultipixel d	etector ca	alibration measurements performed at IASF-Sez. Bologna in January		
2004. The last two	o numb	ers of	file name re	presents	the irradiated pixel number.	
File	Gain	5.1.	Live Time	LLD	Note	
gain 200\PT 0.6		μs	3			
Co57-02 s0	200	0.6	450	5 24	Shaping time characterization 57 Co.n. 13 Ph Collimator $\phi = 5$ mm	
Co57-06 s0	200	0.6	450	5.24	Shaping time characterization, 5^{7} Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-11 s0	200	0.6	450	5.24	Shaping time characterization, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-15 s0	200	0.0	200	5.24	Shaping time characterization, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-15_s0	200	0.6	450	5.24	Shaping time characterization, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
gain 200\PT 2.4	200	0.0	100	5.24	Shaping time characterization, $contrast, rocontinator, \phi = 5 mm$	
$C_{0}57-02\ s0$	200	24	230	5 24	Shaping time characterization 57 Co n 13 Pb Collimator $\phi = 5 \text{ mm}$	
Co57-06.s0	200	2.4	200	5.24	Shaping time characterization, 5^{7} Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-11.s0	200	2.4	200	5.24	Shaping time characterization, 5^{7} Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-15.s0	200	2.4	200	5.24	Shaping time characterization, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-02_s0	200	2.1	200	5.24	Shaping time characterization, $con 13, ro commutor, \phi 5 mm$	
gain 200\PT 1.2	200	2.1	200	5.21		
Co57-00.s0	200	1.2	200	5.24	Spectrum 57 Con 13 Pb Collimator $\phi = 5 \text{ mm}$	
Co57-01.s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-02 s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-03 s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-04 s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-05 s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-06 s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-07 s0	200	1.2	200	5.24	Spectrum, Con. 13, 10 Collimator, ϕ = 5 mm	
Co57-08 s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-09 s0	200	1.2	200	5.24	Spectrum, Con. 13, 10 Collimator, ϕ = 5 mm	
Co57-10 s0	200	1.2	200	5.24	Spectrum, Con. 13, 10 Collimator, ϕ = 5 mm	
Co57-11 s0	200	1.2	200	5.24	Spectrum, Con. 13, 10 Collimator, ϕ = 5 mm	
Co57-12 s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-13 s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-14 s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-15 s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
Co57-15st s0	200	1.2	200	5.24	Spectrum, 57 Co n 13, Pb Collimator, $\phi = 5$ mm	
gain 100\PT 0.6	200	1.2	200	5.21	spectrum, com 19,10 community y 5 mm	
Co57-02.s0	100	0.6	200	5.24	Shaping time characterization 57 Co n 13 Pb Collimator $\phi = 5 \text{ mm}$	
Co57-06.s0	100	0.6	200	5.24	Shaping time characterization, 57 Co n, 13, Pb Collimator, $\phi = 5$ mm	
Co57-11.s0	100	0.6	200	5.24	Shaping time characterization, 57 Co n, 13, Pb Collimator, $\phi = 5 \text{ mm}$	
Co57-15.s0	100	0.6	200	5.24	Shaping time characterization, 57 Co n, 13, Pb Collimator, $\phi = 5 \text{ mm}$	
gain 100\PT 2.4						
Co57-02.s0	100	2.4	200	5.24	Shaping time characterization, 57 Co n. 13, Pb Collimator, $\phi = 5 \text{ mm}$	
Co57-06.s0	100	2.4	200	5.24	Shaping time characterization, 57 Co n. 13, Pb Collimator, $\phi = 5$ mm	
Co57-11.s0	100	2.4	200	5.24	Shaping time characterization, 57 Co n. 13, Pb Collimator, $\phi = 5 \text{ mm}$	
Co57-15.s0	100	2.4	200	5.24	Shaping time characterization, 57 Co n. 13, Pb Collimator, $\phi = 5 \text{ mm}$	
gain 100\PT 1.2						
Co57-00.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, $\phi = 5$ mm	
Co57-01.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	
Co57-02.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	
Co57-03.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	
Co57-04.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	
Co57-05.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	
Co57-06.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, $\phi = 5 \text{ mm}$	
Co57-07.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, $\phi = 5 \text{ mm}$	
Co57-08.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	
Co57-09.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	
Co57-10.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	
Co57-11.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	
Co57-12.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	
Co57-13.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	
Co57-14.s0	100	1.2	200	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm	

IASF-Sez. di Bologna

SCIENTIFIC PERFORMANCE REPORT

Ref:R P Issue: 1 Date: 03/02/04 page: 31/41

Co57-15 s0	100	12	200	5.24	Spectrum 57Con 12 Dh Collimator d= 5 mm
C037-13.80	100	1.2	200	J.24	Spectrum, ⁵ Con. 15, Po Commator, ϕ – 5 mm
gain 100\P1 1.2					107
Cs137-00.s0	100	1.2	307	5.24	Spectrum, ¹³ /Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-04.s0	100	1.2	911	5.24	Spectrum, ¹³⁷ Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-11.s0	100	1.2	72	5.24	Spectrum, ¹³⁷ Cs n. 4, Pb Collimator, $\phi = 5$ mm
gain 50\PT 0.6					
Co57-02.s0	50	0.6	30	5.24	Shaping time characterization, 57 Co n. 13, Pb Collimator, ϕ = 5 mm
Co57-06.s0	50	0.6	30	5.24	Shaping time characterization, 57 Co n. 13, Pb Collimator, $\phi = 5 \text{ mm}$
Co57-11.s0	50	0.6	30	5.24	Shaping time characterization, 57 Co n, 13, Pb Collimator, $\phi = 5 \text{ mm}$
Co57-15.s0	50	0.6	30	5.24	Shaping time characterization 57 Co n 13 Ph Collimator $\phi = 5 \text{ mm}$
gain 50\PT 2.4	20	0.0	50	5.21	Shaping time characterization, $control 15, 10$ continuator, ψ 5 min
$\frac{1}{2.4}$	50	2.4	30	5.24	Shaning time abaratanization ⁵⁷ Con 12 Dh Callimaton d= 5 mm
C 57.0(.0	50	2.4	30	5.24	Shaping time characterization, 5^{7} Co n. 13, Pb Collimator, $\phi = 5 \text{ mm}$
Co57-06.s0	50	2.4	30	5.24	Shaping time characterization, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm
Co57-11.s0	50	2.4	30	5.24	Shaping time characterization, ³⁷ Co n. 13, Pb Collimator, ϕ = 5 mm
Co57-15.s0	50	2.4	30	5.24	Shaping time characterization, 5 Co n. 13, Pb Collimator, $\phi = 5$ mm
gain 50\PT 1.2\f 5					
mm					
Co57-00.s0	50	1.2	30	5.24	Spectrum, 57 Co n. 13, Pb Collimator, $\phi = 5 \text{ mm}$
Co57-01.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, $\phi = 5 \text{ mm}$
Co57-02.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, $\phi = 5 \text{ mm}$
Co57-03.s0	50	1.2	30	5.24	Spectrum. ⁵⁷ Co n. 13. Pb Collimator. $\phi = 5 \text{ mm}$
Co57-04.s0	50	1.2	30	5.24	Spectrum 57 Con 13 Ph Collimator $\phi = 5 \text{ mm}$
Co57-05 s0	50	1.2	30	5.24	Spectrum, 57 Con 13 Pb Collimator, $\phi = 5$ mm
Co57.06 s0	50	1.2	30	5.24	Spectrum, Collins, 10 Collinsten, ϕ = 5 mm
C 57.07.0	50	1.2	30	5.24	Spectrum, 57 Co n. 13, PB Collimator, $\emptyset = 5 \text{ mm}$
Co5/-0/.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm
Co57-08.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm
Co57-09.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm
Co57-10.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm
Co57-11.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 5 mm
Co57-12.s0	50	1.2	30	5.24	Spectrum. ⁵⁷ Co n. 13. Pb Collimator, $\phi = 5 \text{ mm}$
Co57-13.s0	50	1.2	30	5.24	Spectrum 57 Con 13 Pb Collimator $\phi = 5 \text{ mm}$
Co57-14 s0	50	12	30	5.24	Spectrum, 57 Con 13 Pb Collimator, $\phi = 5$ mm
Co57-15 s0	50	1.2	30	5.24	Spectrum, 57 Con 13 Pb Collimator, $\phi = 5$ mm
$c_{0,0} = \frac{1}{1000} = \frac{1}{1$	50	1.2	50	5.24	Spectrum, com 15, 10 commator, φ 5 mm
gain 50\P1 1.2\15					
111111					
$C_{a}127,00,a0$	50	1.2	200	5.24	\mathbf{C} \mathbf{A} \mathbf{P} \mathbf{C} \mathbf{U} \mathbf{A} \mathbf{F}
Cs137-00.s0	50	1.2	300	5.24	Spectrum, 137 Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs13/-01.s0	50	1.2	300	5.24	Spectrum, ¹³⁷ Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-02.s0	50	1.2	300	5.24	Spectrum, ¹³ /Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-03.s0	50	1.2	300	5.24	Spectrum, ¹³⁷ Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-04.s0	50	1.2	300	5.24	Spectrum, ¹³⁷ Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-05.s0	50	1.2	300	5.24	Spectrum, ¹³⁷ Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-06.s0	50	1.2	300	5.24	Spectrum, 137 Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-07.s0	50	1.2	300	5.24	Spectrum. ¹³⁷ Cs n. 4. Pb Collimator. $\phi = 5 \text{ mm}$
Cs137-08.s0	50	1.2	300	5.24	Spectrum. ¹³⁷ Cs n. 4. Pb Collimator $\phi = 5$ mm
Cs137-09 s0	50	1.2	300	5.24	Spectrum, ¹³⁷ Cs n 4 Ph Collimator, ϕ 5 mm
Cs137-10-0	50	1.2	300	5.24	Spectrum, 137 Cs n 4 Dh Collimator, $\psi = 5$ mm
Ca127 11 a0	50	1.2	200	5.24	Spectrum, 137_{Cons} , 4, F0 Commator, φ = 5 mm
C\$137-11.80	50	1.2	300	5.24	Spectrum, 137 Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-12.s0	50	1.2	300	5.24	Spectrum, 137 Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-13.s0	50	1.2	300	5.24	Spectrum, ¹³⁷ Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-14.s0	50	1.2	300	5.24	Spectrum, ¹³⁷ Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs137-15.s0	50	1.2	300	5.24	Spectrum, ¹³⁷ Cs n. 4, Pb Collimator, ϕ = 5 mm
Cs-00-5m.s0	50	1.2	3600	5.24	Spectrum, ¹³⁷ Cs n. 4, Pb Collimator, $\phi = 5 \text{ mm}$
gain50\PT1.2\f3.5					
Co57-00.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, $\phi = 3.5$ mm
Co57-01.s0	50	1.2	30	5.24	Spectrum 57 Con 13 Ph Collimator $= 3.5 \text{ mm}$
Co57-02 s0	50	1.2	30	5.24	Spectrum, Commission of the commutation, $\psi = 3.5 \text{ mm}$
$C_{057} = 02.80$	50	1.2	20	5.24	Spectrum, Coll. 15, Fo Collimator, $\psi = 3.5$ IIIII
C-57.04.0	50	1.2	20	5.24	Spectrum, "Co n. 15, PD Collimator, ϕ = 5.5 mm
Co5/-04.s0	50	1.2	30	5.24	Spectrum, "Co n. 13, Pb Collimator, ϕ = 3.5 mm
Co57-05.s0	50	1.2	30	5.24	Spectrum, ⁵ /Co n. 13, Pb Collimator, ϕ = 3.5 mm
Co57-06.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 3.5 mm

IASF-Sez. di Bologna

SCIENTIFIC PERFORMANCE REPORT

Ref:R P Issue: 1 Date: 03/02/04 page: 32/41

Co57-07.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 3.5 mm
Co57-08.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 3.5 mm
Co57-09.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 3.5 mm
Co57-10.s0	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, $\phi = 3.5$ mm
Co57-11.s0	50	1.2	30	5.24	Spectrum 57 Con 13 Ph Collimator $\phi = 3.5$ mm
Co57-12 s0	50	1.2	30	5.24	Spectrum, 57 Con 12 Pb Collimator, $\phi = 3.5$ mm
Co57_12_s0	50	1.2	30	5.24	Spectrum, Collimator, ψ = 3.5 mm
Co57-13.80	50	1.2	30	5.24	Spectrum, 10 Cominition, ψ = 3.5 mm
C037-14.80	50	1.2	30	5.24	Spectrum, ⁵⁷ Co n. 13, Pb Collimator, ϕ = 3.5 mm
C05/-15.s0	50	1.2	30	5.24	Spectrum, ³⁷ Co n. 13, Pb Collimator, ϕ = 3.5 mm
gain 50\PT 1.2					. 107
Cs137-00.s0	50	1.2	2700	5.24	Spectrum, uncollimated ^{13/} Cs n. 4
Cs137-01.s0	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
Cs137-02.s0	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
Cs137-03.s0	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
Cs137-04.s0	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
Cs137-05.s0	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
Cs137-06.s0	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
Cs137-07.s0	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
Cs137-08.s0	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
Cs137-09.s0	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
Cs137-10.s0	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
Cs137-11.s0	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
Cs137-12 s0	50	1.2	2700	5.24	Spectrum uncollimated ¹³⁷ Cs n 4
Cs137-13 s0	50	1.2	2700	5.24	Spectrum uncollimated ¹³⁷ Cs n 4
Cs137-14 s0	50	1.2	2700	5.24	Spectrum uncollimated ¹³⁷ Cs n 4
$C_{s137-14.30}$	50	1.2	2700	5.24	Spectrum, uncollimated 137 Cs n A
$C_{\rm S} 00.5 \text{m} \text{s}0$	50	1.2	2700	5.24	Spectrum, uncollimated ¹³⁷ Cs n. 4
CS-00-5111.SU	50	1.2	2700	5.24	Spectrum, uncommated CS n. 4
gain 50\r1 1.2	50	1.2	20	5.24	Succession and a 157 Community of 12
Co57-00.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-01.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-02.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-03.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-04.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-05.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-06.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-07.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-08.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-09.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-10.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-11.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-12.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-13.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-14.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
Co57-15.s0	50	1.2	20	5.24	Spectrum, uncollimated ⁵⁷ Co n. 13
15fondo.s0	50	1.2	2700	5.24	Background spectrum of pixel 15
gain 33	-	1		1	
Co-57-00	33	1.2	40	0.49	Spectrum, uncollimated ⁵⁷ Co n. 13
Co-57-02	33	1.2	40	0.49	Spectrum, uncollimated ⁵⁷ Co n. 13
Co-57-05	33	1.2	40	0.49	Spectrum, uncollimated ⁵⁷ Co n 13
Co-57-06	33	1.2	40	0.49	Spectrum, uncollimated ⁵⁷ Co n 13
Co-57-11	33	1.2	40	0.49	Spectrum, uncollimated ⁵⁷ Co.p. 13
Co-57-15	33	1.2	40	0.49	Spectrum, uncollimated ⁵⁷ Co.p. 13
Cs137-06	33	1.2	200	0.49	Spectrum uncollimated ¹³⁷ Con A
Cs137-00	22	1.2	200	0.49	Spectrum, uncollimated ¹³⁷ Co n. 4
$c_{s13/-11}$	33	1.2	200	0.49	Specialum, uncommated and S n. 4
gain 200\no coll	200	1.2	50	25.22	Superturn uncellimeted $57C_{-1}$, 12 Discours 1, 1', ', ', 1, 1
Co57-00.SU	200	1.2	50	25.25	Spectrum, uncommated 500 n. 13, Pb cover, low discriminator level
Co5/-00s0	200	1.2	50	23.23	Spectrum, uncollimated ³⁷ Co n. 13, Pb cover
Co002023.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-01.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-02.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-03.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-04.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-05.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-06.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover

IASF-Sez. di Bologna

SCIENTIFIC PERFORMANCE REPORT

Ref:R P Issue: 1 Date: 03/02/04 page: 33/41

Co57-07.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-08.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-09.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-10.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-11.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-12.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-13.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-14.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
Co57-15.s0	200	1.2	50	20.23	Spectrum, uncollimated ⁵⁷ Co n. 13, Pb cover
gain 200\no coll					
AM241-00.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-01.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-02.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-03.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-04.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-05.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-06.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-07.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-08.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-09.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-10.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-11.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-12.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-13.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-14.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
AM241-15.s0	200	1.2	500	14.98	Spectrum, uncollimated ²⁴¹ Am n. 3, Pb cover
Stability					
0H-05.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
0H-08.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
2H-05.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
2H-08.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
4H-05.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
4H-08.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
6H-05.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
6H-08.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
8H-05.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
8H-08.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
24H-05.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
24H-08.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
168H-05.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
168H-08.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
56D-05.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
56D-08.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
3105-05.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
3105-08.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
1006-00.s0	200	1.2	/0	25.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
1006-01.s0	200	1.2	65	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
1006-02.s0	200	1.2	65	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
1006-03.s0	200	1.2	65	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
1006-04.s0	200	1.2	70	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
1006-05.s0	200	1.2	50	20.23	Evaluation of the detector stability with uncollimated ³⁷ Co n. 13, Pb cover
1006-05s0	200	1.0	65	20.22	
1006-06.s0	200	1.2	65	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
1006-07.s0	200	1.2	0) 50	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Co n. 13, Pb cover
1000-08.s0	200	1.2	50 65	20.23	Evaluation of the detector stability with uncollimated ³⁷ Co n. 13, Pb cover
1000-08SU	200	1.2	65	20.22	Evaluation of the dataston stability with we - 11: we to 1 57 Co. v. 12 Di
1000-09.SU	200	1.2	03 65	20.23	Evaluation of the detector stability with uncollimated 5 Co n. 13, Pb cover Evaluation of the detector stability with uncollimated 5 Co n. 13, Pb cover
1000-10.SU	200	1.2	65	20.23	Evaluation of the detector stability with uncollimated 5 Co n. 13, Pb cover Evaluation of the detector stability with uncollimated 57 Co n. 12, Pl
1000-11.SU	200	1.2	65	20.23	Evaluation of the detector stability with uncollimated ⁵⁷ Con. 13, Pb cover
1000-12.SU	200	1.2	65	20.23	Evaluation of the detector stability with uncollimated 5 Co n. 13, Pb cover Evaluation of the detector stability with uncollimated 57 Co n. 12, Pl
1006-13.SU	200	1.2	03 65	20.23	Evaluation of the detector stability with uncollimated 5 Co n. 13, Pb cover
1006-14.SU	200	1.2	00	20.23	Evaluation of the detector stability with uncollimated "Con. 13, Pb cover
1006-15.s0	200	1.2	00	20.23	Evaluation of the detector stability with uncollimated "Con. 13, Pb cover

Ref:R P Issue: 1 Date: 03/02/04 page: 34/41

Ref:R P Issue: 1 Date: 03/02/04 page: 35/41

Ref:R P Issue: 1 Date: 03/02/04 page: 37/41

Ref:R P Issue: 1 Date: 03/02/04 page: 38/41

Ref:R P Issue: 1 Date: 03/02/04 page: 39/41

Ref:R P Issue: 1 Date: 03/02/04 *page:* 40/41

Ref:R P Issue: 1 Date: 03/02/04 page: 41/41

