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SUMMARY-The Integrated Sachs-Wolfe effect is studied in order to lower the
quadrupole of the anisotropies of Cosmic Microwave Background. The analysis
is done for a flat Robertson-Walker metric and for a single fluid case (a unified
model for dark matter and dark energy), making contact with the ΛCDM case.
We show analitically that the quadrupole can be lowered down to half the value
of the ΛCDM case.

1 Introduction

The low multipole of the Cosmic Microwave Background (CMB) anisotropy pattern probes
the largest scales of our universe, far beyond the present Hubble radius and possibly our
cosmological horizon. The measurement of this low ! pattern cannot be very precise since it is
affected by cosmic variance, systematics (including those unexpected [1]) and foregrounds [2].
However, the two experiments so far capable to measure such low multipoles - COBE/DMR
and WMAP - have detected an amplitude for the quadrupole surprisingly low compared to
theoretical expectations.

Although the low amplitude for the quadrupole is not very significative at the statistical
level, theoretical explanations for a low-! tail should be searched. These investigations for a
low quadrupole are apparently flawed by the concomitant evidence of the present acceleration
of the universe. The simplest model which explains such an acceleration, i. e. ΛCDM,
predicts an increase (compared to CDM) of the low-multipoles of the CMB spectrum due to
the Integrated Sachs-Wolfe (ISW) effect, as first computed by Kofman and Starobinsky [4].
When Λ is replaced by quintessence [5], the low tail is further increased 1.

Theoretical explanations have then been tempted in a multitude of ways. A cut-off in
Fourier space has been analyzed [8, 9], finding a weak statistical evidence that this break
is around the present Hubble radius. Another simple possibility is a closed universe, where
there is a maximal wavelength allowed, as in a box [10]. Beyond a simple closed geometry, a
low amplitude can be obtained by considering non-trivial topology [11, 12].

1The reason for this increase is a late isocurvature effect after perturbations leave their attractor [6]
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In this paper we investigate if the ISW effect can lower the quadrupole, in order to see if
the conclusions reached for the ΛCDM case - an increase of the low tail of the CMB pattern
- are generic for a Dark Energy (DE) model. We restrict ourselves to flat geometry and we
analyze physical behaviour of cosmological perturbations (not in a completely phenomeno-
logical approach as in [7]). In order to make contact with the basic ΛCDM case we consider
a model in which CDM and DE are described by a unique component, which mutates from
dust to a component with a constant state parameter (< −1/3) which drives the universe
into acceleration. We also assume that such component has a non-adiabatic pressure per-
turbation, but a vanishing speed of sound: however, we discuss the effect of relaxing such
latter assuption. Our model is different from a universe filled by CDM plus DE since in that
case two dynamical components are present and isocurvature perturbations are unavoidable
(unless DE is described by a perfect fluid and the initial conditions are adiabatic, such as in
[13, 14]).

2 The Model

In a Friedman-Robertson-Walker metric

ds2 = a(η)2
[

−dη2 +
dr2

1 − Kr2
+ r2dΩ2

]

, (2.1)

where K = 0,±1 is the curvature of the spatial sections, Ω is the solid angle and a is the
scale factor, the continuity equation for a fluid is

ρ′ + 3H(ρ + p) = 0 , (2.2)

where H = a′/a and η is the conformal time (related to the cosmic time by a dη = dt). We
parametrize the fluid as:

ρ = ρxaα + ρca
−3 , (2.3)

as a component which behaved as dust in the past and a component with −α/3−1 as a state
parameter recently. Clearly the ΛCDM behaviour is obtained for α = 0.

We consider scalar perturbations of the metric (with K = 0) in the Conformal Newtonian
(or Longitudinal) Gauge:

ds2 = a2(η)
[
−(1 + 2ψ(η, &x))dη2 + (1 − 2φ(η, &x)) d&x2

]
, (2.4)

where ψ(η, &x) and φ(η, &x) are the two scalar potentials. Supposing that the anisotropic stress
tensor vanishes for the fluid we are considering, then ψ(η, &x) = φ(η, &x).

After decoupling (η > ηdec) photons follow light-like geodesics. Because of the small
deviations from the FRW metric there will be a shift in the energy for each photon. This
shift does not depend on the frequency of the photon (gravity is achromatic) and it is equal
to the temperature shift of a distribution of photons. The amount of the shift is given by the
Sachs-Wolfe effect:

∆T

T
(&n) =

1
3
ψ(ηdec, &xdec) + 2

∫ η0

ηdec

dη ψ′ (η, &x(η)) , (2.5)

where &n is the versor of the direction of the photon, η0 is the present time, the prime (′)
stands for derivative with respect to η, &x(η) = &x0 − (η0 − η)&n (we are dealing with a spatially
flat universe), &xdec = &x(ηdec) and &x0 = &x(η0). The first term is the Ordinary Sachs-Wolfe
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Effect (OSWE) and it is due to the inhomogeneities of the space-time at the time of the
decoupling. The second term is the Integrated Sachs-Wolfe Effect (ISWE) and it takes into
account the time dependence of the gravitational field along the path of the photon.

The scale factor obeys the Friedmann equation

H2 =
8πG

3
a2 ρ , (2.6)

where G is the Newtonian constant and ρ is the background source, while the Fourier trans-
form of ψ, ψk, satisfies

ψ′′
k + 3H(1 + c2)ψ′

k +
[
c2
sk

2 + 3H2(c2 − w)
]
ψk = 0 . (2.7)

where c2
s and w are respectively the speed of sound and the entalpy of the source. In order

to obtain such equation, the pressure perturbation of the fluid must be [15]:

δp = c2
sδρ + 3H(1 + w)

θρ

k2

(
c2
s −

ṗX

ρ̇X

)
, (2.8)

with c2 = ṗ/ρ̇. In the following we will restrict to the case c2
s # 0.

2.1 Computation of Cl

In the Fourier space Eq. (2.5) reads

∆T

T
(&n) =

∫
d3k

(2π)3

[1
3
ψ(ηdec, &k) e−ı#k·(η0−ηdec)#n + 2

∫ η0

ηdec

dη ψ′ (η,&k) e−ı#k·(η0−η)#n
]
eı#k·#x0 , (2.9)

where &k is the momentum conjugated to &x. Now it is possible to compute the two points
correlation function:

〈∆T

T
(&n)

∆T

T
(&n′)〉 =

1
V

∫
d3x0

∆T

T
(&n)

∆T

T
(&n′) . (2.10)

Notice that 〈· · ·〉 means average over the positions of observation. Replacing Eq. (2.9) in
Eq. (2.10) one obtains

〈∆T

T
(&n)

∆T

T
(&n′)〉 =

∫
d3k

(2π)3

[1
3
ψ(ηdec, &k) e−ı#k·(η0−ηdec)#n + 2

∫ η0

ηdec

dη ψ′ (η,&k) e−ı#k·(η0−η)#n
]

[1
3
ψ(ηdec, &k) e−ı#k·(η0−ηdec)#n′

+ 2
∫ η0

ηdec

dη ψ′ (η,&k) e−ı#k·(η0−η)#n′
]$

,(2.11)

where $ stands for complex conjugation. Using now the following relation

e−ı#k·(η0−η)#n =
∞∑

l=0

(2l + 1)jl(k(η0 − ηdec))Pl(k̂ · &n) , (2.12)

where k̂ = &k/|&k|, jl are the spherical Bessel functions and Pl are the Legendre polynomials,
and considering that

Pl(k̂ · &n) =
4π

(2l + 1)
∑

m

Y $
lm(k̂)Ylm(&n) , (2.13)

where Ylm are the spherical harmonics, and once splitted the integration d3k = k2 dk dΩk,
using the following orthonormality relation

∫
dΩk Y $

lm(k̂)Yl′m′(k̂) = δll′ δmm′ , (2.14)
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one obtains

〈∆T

T
(&n)

∆T

T
(&n′)〉 =

∞∑

l=0

(2l + 1)
4π

Pl(&n · &n′)Cl , (2.15)

where

Cl =
2
π

∫ ∞

0
dk k2

[1
3
ψ(ηdec, &k) jl(k(η0 − ηdec)) + 2

∫ η0

ηdec

dη ψ′ (η,&k) jl(k(η0 − η))
]2

. (2.16)

The function given in Eq. (2.16) (which is called CMB power spectrum) represents the amount
of fluctuation at the scale l. At the time of decoupling (η = ηdec) the power spectrum of the
metric perturbation is written as Pk = k3|ψk(ηdec)|2 = Ā2(η0 k)ns−1f2(ηdec)/4, and in the
limit of small k (i.e. large scales limit) it is possible to write ψk(η) = ψkf(η) where ψk is
tuned at the time of decoupling (ψk = Ā(η0 k)(ns−4)/2/2) and f(η) is given by

f(η) = 1 − a′

a3

∫ η

0
dτ a2(τ) , (2.17)

that is the Kofman-Starobinski solution [4]. Then replacing in Eq. (2.16) one gets the follow-
ing expression for Cl:

Cl =
2Ā2ηns−1

0

π

∫ k!

0

dk

k(2−ns)

[ 1
10

jl(k η0) +
∫ η0

0
dη f ′ (η) jl(k(η0 − η))

]2

, (2.18)

where it has been chosen ηdec = 0, f(ηdec = 0) = 3/5; k$ is a cut off due to the approximated
solution of Eq. (2.17) and ns is the spectral index (ns = 1 when the spectrum is scale
invariant). When c2

s = 0 (see Eq. (2.7)), as in the ΛCDM model or in the model we are
considering 2, the solution (2.17) is exact and there is no need of a cut-off (i.e. k$ = ∞).

2.2 Analitycal Computation

Replacing eq. (2.3) in eq. (2.6), it is possible to integrate for η:

η(a) =
2
H0

(
a

Ωc0

)1/2

2F1

[ 1
6 + 2α

,
1
2
, 1 +

1
6 + 2α

,−a3+αΩx0

Ωc0

]
, (2.19)

where 2F1 is an Hypergeometric Function, Ωi = ρi/ρ̄ with ρ̄ = 3H/(8πGa2) and in general
the subscript 0 means that the function which the label is appended to, has to be computed
at the present (conformal) time. Notice that

Ωx0

Ωc0
=

ρx

ρc
, (2.20)

and moreover remember that from eq. (2.6) we have

Ωx0 + Ωc0 = 1 . (2.21)

In order to compute Cl (see eq. (2.18)), one has to take the time derivative of eq. (2.17)
and using also eq. (2.6), one gets

f ′(a) = a

√
8πG

3



2
5

(
ρxaα(1 − α

2
) +

5
2
ρca

−3
) √

a3

ρc
F (a) −

(
ρxa

α + ρca
−3

)1/2



 , (2.22)

2See Section 2.
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where

F (a) =2 F1

[ 5
6 + 2α

,
1
2
, 1 +

5
6 + 2α

,−a3+αΩx0

Ωc0

]
(2.23)

Since in general eq. (2.19) is not invertible 3, it is not possible to have (analytically) f ′ as
a function of η. In order to have an analytical expression for the ISWE (see eq. (2.18)), it is
necessary to change the variable of integration from η to a:

Cl =
2Ā ηns−1

0

π

∫ k!

0

dk

k(2−ns)

[ 1
10

jl(k η(1)) +
∫ 1

0
da

df

da
jl(k(η(1) − η(a)))

]2

, (2.24)

with a(η0) = 1 and where:

df

da
=

1
a




2
5(1 − α

2 )ρx
ρc

aα+3 + 1
(

ρx
ρc

aα+3 + 1
)1/2

F (a) − 1



 . (2.25)

It is interesting to notice that in the following limit (i.e. (ρx/ρc)aα+3 ' 1 , 0 < a < 1),
df/da → 0. This confirms a known result: when the evolution of a is power law like (as in
the case of CDM source) then ISWE vanishes.

Because of numerical analysis, it is better to deal with dimensionless variables. Then it
is usefull to rescale the variable k as follows s = k/H0. One obtains:

Cl =
2Ā (η0H0)ns−1

π

∫ s!

0

ds

s(2−ns)

[ 1
10

jl(s χ(1)) +
∫ 1

0
da

df

da
jl(s(χ(1) − χ(a)))

]2

, (2.26)

where s$ = k$/H0 and χ(a) = H0 η(a).

3 Numerical Results

We consider the scale invariant case (ns = 1) and as already announced, we take into account
a source such that its pressure does not depend on ρ (then s$ = ∞):

Cl =
2Ā
π

∫ ∞

0

ds

s

[ 1
10

jl(s χ(1)) +
∫ 1

0
da

df

da
jl(s(χ(1) − χ(a)))

]2

. (3.1)

We focus on the quadrupole (i.e. l = 2). The numerical results are organized in Table I.
The integration is obtained starting from s = 1/5 and stopping at s = 25. These cut-offs are
chosen in such a way that the numbers put in the table are stable if the range of integration
is made wider. The first observation deal with the qualitative lowering of the quadrupole:

3For α = 0 (i.e. ΛCDM model) it is invertible [4], but one has to make the computation in the cosmic time
t and not in the conformal time η.

Ωx0 Ωc0 α = −2 α = −1 α = 0 α = 1 α = 2 α = 3 α = 4
1/10 9/10 0.00080 0.00081 0.00082 0.00082 0.00083 0.00083 0.00083
7/10 3/10 0.00066 0.00092 0.00115 0.00133 0.00147 0.00156 0.00161
9/10 1/10 0.00058 0.00131 0.00219 0.00304 0.00380 0.00444 0.00494

Table 1: C2π/2Ā vs α and Ωx0,Ωc0.
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it exists if α is negative. Second, we notice that such a lowering is quantitatively bigger if
Ωx0/Ωc0 is larger and larger. This is understandable since this is the regime in which the
ISWE is important (in the opposite regime ISWE tends to zero). As istance, in the most
interesting case (i.e. Ωx0 = 7/10 and Ωc0 = 3/10), we get a lowering of the 42 % for α = −2
with respect to α = 0.

In order to understand the behaviour described in the first observation, we rewrite eq. (3.1)
in the following way:

Clπ

2Ā
=

∫ ∞

0
ds [F1(s) + F2(s) + F3(s)] , (3.2)

where

F1(s) =
1

100 s
j2(s χ(1))2 , (3.3)

F2(s) =
[∫ 1

0
da

df

da
j2(s(χ(1) − χ(a)))

]2

/s , (3.4)

F3(s) =
1
5 s

j2(s χ(1))
[∫ 1

0
da

df

da
j2(s(χ(1) − χ(a)))

]
, (3.5)

and we plot these three functions for different values of α (See Fig. 1, 2, 3). Ωx0 and Ωc0 are
fixed respectively to 7/10 and 3/10. We used different colors in order to distinguish among
the values of α: Black corresponds to α = −2, Blu to α = −1, Red to α = 0, Green to α = 1,
Sky Blu to α = 2.

It is clear that we have to look at the areas subtended by these curves and sum up the
three contributions in order to obtain the quadrupole. Here there are some observations:

• We checked that the areas under the curves of Fig. 1 is always the same and it is equal
to 0.00083. The dependence on α appears in next digit.

• The area subtented by the curves in Fig. 2 is the smallest for α = −2 and it becomes
bigger and bigger for increasing α.

• The mixing term (Fig. 3 gives a negative contribution that is the biggest (in absolute
value) for α = −2 and it becomes smaller and smaller (in absolute value) for increasing
α.

4 Conclusion

In this paper we have computed the quadrupole of the CMB anisotropies for a fluid which be-
haved dust in the past, but capable to drive the universe into accelleration recently. We have
approximated the state parameter of this fluid as constant and we have neglected baryons
in our analysis. By requiring a vanishing speed of sound for this component (as for CDM in
standard cosmology) we have computed semianalitically the quadrupole of the CMB temper-
ature pattern and we have demonstrated that it can be lowered approximatively to half of
the ΛCDM value.

A Appendix: The Generalized Chaplygin Gas

In this appendix we repeat the same calculation for another model which has shown a de-
crease in the amplitude of the low-! pattern of CMB temperature anisotropies, namely the
Generalized Chaplygin Gas studied in [13, 14].
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Figure 1: F1(s): Integrand of the Ordinary Sachs-Wolfe effect for different values of α.
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Figure 2: F2(s): Integrand of Integrated Sachs-Wolfe effect for different values of α.
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Figure 3: F3(s): Integrand of the the mixing term for different values of α.
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A.1 Some features of this gas

The GCG is characterized by the following equation of state:

pX = − A

ρβ
X

, (A.1)

where pX is the pressure and ρX is the energy density of the GCG, β and B are two free
positive parameters (β = 1 corresponds to Chaplygin Gas). In this case ρX can be exactly
integrated

ρX =
(

A +
B

a3(1+β)

)1/(1+β)

, (A.2)

where A and B are constants of dimensions M4(1+β). If β = 0 then GCG recovers ΛCDM
model (i.e. CDM model with a Cosmological Constant), while if B = 0 then GCG recovers
CDM model.

From eq. (A.2) it is clear that GCG behaves like dust when B/A ) a3(1+β) (assuming
a = 1 at the present time) while it behaves like a cosmological constant in the opposite regime
(B/A ' a3(1+β)). This explains why the GCG is an unified model for CDM and DE.

Moreover in the limit of large a it is possible to show that GCG is the sum of a cosmological
constant and a subdominant perfect fluid with equation of state p = βρ. This allows for a
physical interpretation of the parameter β.

The entalpy wX is given by

wX =
pX

ρX
= − A

ρX
1+β

= − A

A + B
a3(1+β)

, (A.3)

and decreases from 0 (corresponding to a = 0) to -1 (a = ∞).
The speed of sound c2

X for the GCG is given by 4

c2
X =

∂pX

∂ρX
= β

A

ρX
1+β

= −βwX , (A.4)

then it takes values from 0 (corresponding to a = 0) to β (corresponding to a = ∞). In order
to have a speed of sound at most luminal we set 0 ≤ β ≤ 1.

A.2 Analitycal Computation for the GCG

Replacing eq. (A.2) in eq. (2.6), it is possible to integrate for η:

η(a) =
2
H0

(1 +
A

B
)

1
2(1+β) a1/2

2F1

[ 1
6(1 + β)

,
1

2(1 + β)
, 1 +

1
6(1 + β)

,−a3(1+β) A

B

]
, (A.1)

where 2F1 is an Hypergeometric Function and H0 is the value of the Hubble rate at the
present (conformal) time.

In order to compute Cl (see eq. (2.18)), one has to take the time derivative of eq. (2.17)
and using also eq. (2.6), one gets

f ′(a) =
1√

3MP l




2
5

A + 5
2Ba−3(1+β)

(
A + B

a3(1+β)

)β/(1+β)

a5/2

B1/(2(1+β))
G(a) − a

(
A +

B

a3(1+β)

)1/(2(1+β))



 ,(A.2)

4Notice that since pX depends on time only through ρX (see eq. (A.1)), the two definitions for the speed
of sound, given in Section 2, coincide.
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α = 0 α = 1/10 α = 1/4 α = 1/2 α = 1 α = 2
A/B = 1 0.00082 0.00082 0.00082 0.00081 0.00081 0.00081

A/B = 7/3 0.00096 0.00092 0.00089 0.00086 0.00083 0.00081
A/B = 10 0.00195 0.00180 0.00160 0.00134 0.00104 0.00085

Table 2: C2π/(2Ā) vs β and A/B with UV = 6 and IR = 1/5 where ns = 1.

where
G(a) = 2F1

[ 5
6(1 + β)

,
1

2(1 + β)
, 1 +

5
6(1 + β)

,−a3(1+β) A

B

]
.

Since in general eq. (A.1) is not invertible 5, it is not possible to have (analytically) f ′ as a
function of η. In order to have an analytical expression for the ISWE (see eq. (2.18)), it is
necessary to change the variable of integration from η to a:

Cl =
2Ā ηns−1

0

π

∫ k!

0

dk

k(2−ns)

[ 1
10

jl(k η(1)) +
∫ 1

0
da

df

da
jl(k(η(1) − η(a)))

]2

, (A.3)

with a(η0) = 1 and where:

df

da
=

1
a




2
5

1 + 5
2B/Aa−3(1+β)

(
1 + B/A

a3(1+β)

)(β+1/2)/(1+β)

(
B/A

a3(1+β)

)−1/(2(β+1))

G(a) − 1



 . (A.4)

It is interesting to notice that in the dust limit (i.e. B/A ) a3(1+β) , 0 < a < 1 , β > 0),
df/da → 0. This confirms a known result: when the evolution of a is power law like (as in
the case of CDM source) then ISWE vanishes.

Because of numerical analysis, it is better to deal with dimensionless variables. Then it
is usefull to rescale the variable k as follows s = k/H0. One obtaines:

Cl =
2Ā (η0H0)ns−1

π

∫ s!

0

ds

s(2−ns)

[ 1
10

jl(s χ(1)) +
∫ 1

0
da

df

da
jl(s(χ(1) − χ(a)))

]2

, (A.5)

where s$ = k$/H0 and χ(a) = H0 η(a).

A.3 Numerical Results for GCG

Again we consider the scale invariant case, so we set ns = 1 in eq. (A.5). See table 2.
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