
Internal Report IASF-BO 416/2005

May 23, 2005

AN ANALYTICAL APPROACH TO
LOW MULTIPOLE EFFECTS
FROM THE DIPOLE STRAYLIGHT CONTAMINATION
IN PLANCK-LIKE CMB ANISOTROPY MISSIONS

A. Gruppuso1, C. Burigana1, F. Finelli1

1INAF-IASF, Sezione di Bologna, via P. Gobetti 101,
I-40129, Bologna, Italy

1



Internal Report IASF-BO/416/2005

May 23, 2005

AN ANALYTICAL APPROACH TO
LOW MULTIPOLE EFFECTS

FROM THE DIPOLE STRAYLIGHT CONTAMINATION
IN PLANCK-LIKE CMB ANISOTROPY MISSIONS

A. Gruppuso, C. Burigana, F. Finelli

INAF-IASF, Sezione di Bologna, via P. Gobetti 101, I-40129, Bologna, Italy

SUMMARY - We extend our previous analytical model aimed at the parametri-
zation of the straylight contamination due to the kinematic CMB dipole pattern
[1]. In this generalization we do not constraint the direction of pointing of the
main spillover to be the same as the spin axis, but we introduce an angle α != 0
between them. In this case we compute time ordered data and map. The map
is analyzed in spherical harmonic expansion with a particular care to low multi-
poles. The impact on the dipole, quadrupole, octupole and esadecapole due to
this spurious effect is discussed.

1 Introduction

In a simple analytical model [1], we tackled the systematic effect induced at low multipoles by
the CMB kinematic dipole signal entering the main spillover (see, e.g. [2, 3, 4], for a discussion
on straylight contamination in the context of PLANCK Low Frequency Instrument [5] or [8]
in the context of WMAP).

The aim of this note is to generalize that analysis to the more realistic case where the
direction of pointing of the main spillover is not parallel to from the spin axis (albeit keeping
the main spillover centre in the plane defined by the telescope axis and the spin axis). We
want to see how the effects at low multipoles change when there is an angle α != 0 between
the spin axis and the direction of the main spillover.

The model, we build here, is still fully analytical.
We will work in the rest frame with the satellite with axes pointing fixed (far away) stars.

In this frame the vector associated to the dipole is constant while the straylight is not (it
rotates of 2π in 1 year). We consider the dipole for the motion of the Sun with respect to
the rest frame of the CMB and we neglect, for simplicity, small deviations due to the motion
of the Earth around the Sun.

The report is organized as follows: in Section 2 the convolution of the dipole and the
straylight beam is computed and the analytical model for the beam response in the main
spillover region is presented; in Section 3 the map due to this systematic effect is analytically
computed for the multipoles l = 1, 2, 3, 4; in Section 4 some observations on the power
spectrum (i.e. Cl) are made. Finally, our main conclusions are drawn in section 5.
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2 The dipole and the straylight beam

We start considering the convolution I of the dipole with the spillover 1:

I =
∫

dΩT1mY m
1 (θ,ϕ)BSL(θ,ϕ) , (2.1)

where dΩ is the element of solid angle, dΩ = dθ sin θ dϕ with the colatitude θ ∈ [0,π] and
the longitude ϕ ∈ [0, 2π [ , the sum on m over −1, 0, 1 is understood, T1m are the coefficients
of the expansion of the dipole 2 on the spherical harmonics basis Y m

1 (θ,ϕ), and BSL(θ,ϕ)
is the beam response representing the shape of the main spillover in the (θ,ϕ)-plane. In
this notation BSL is normalized to the whole beam integrated response, dominated by the
contribution in the main beam

∫
4π dΩB $

∫
main beam dΩB $ 2πσ2

b where σb = FWHM/
√

8ln2.
The convolution I can be rewritten in the following way:

I =
√

3
4π

[
T10

∫
dθ dϕ sin θ cos θ BSL(θ,ϕ) −

√
2

∫
dθ dϕ sin2 θ Re

[
T11e

iϕ
]

BSL(θ,ϕ)
]
(2.2)

where Re [...] stands for real part. In order to obtain the expression of eq. (2.2) it has
been used that T1−1 = −T #

11 where the symbol # means complex conjugation. Moreover the
following spherical harmonics (for l = 1) have been used [6]:

Y 0
1 (θ,ϕ) =

√
3
4π

cos θ , (2.3)

Y 1
1 (θ,ϕ) = −

√
3
8π

eiϕ sin θ , (2.4)

Y −1
1 (θ,ϕ) =

√
3
8π

e−iϕ sin θ . (2.5)

Even if it is not clear from the notation of eq. (2.2), notice that I is a function of the
geometric features of the shape of the main spillover in the (θ,ϕ)-plane.

2.1 A simple analytical model

Eq. (2.2) is general and exact (i.e. no approximation has yet been performed). Any specific
approximation of the window function BSL will introduce a certain degree of uncertainty. As
already mentioned, our aim is to choose BSL as simple as possible such that all the integrations
are computable analytically but nevertheless without neglecting the main features that, we
think, are responsible for possible systematic effects. In other words we want to simplify as
much as possible this function, without vanishing the effect we are looking for.

Our approximation for BSL is the following:

BSL(θ,ϕ) = fSL ∆( θ, θms −∆θ<, θms + ∆θ>)∆(ϕ, ϕms −∆ϕ<, ϕms + ∆ϕ>) (2.6)
with ∆(a, b, c) = S(a − b) − S(a − c) ,

where fSL is a constant (that is related to the ratio between the power entering the spillover
and the power entering the main beam, i.e. it is a number much less than 1; in Section 3.7 it
will be estimated) and S(x) is the step function (or Heavyside function) that takes the value
1 for x ≥ 0 and the value 0 otherwise. Eq. (2.6) is just an asymmetric rectangular box, in the

1It is the main effect of the Straylight beam in the full antenna pattern.
2We use the symbol Tlm because we want to make it clear that the dimensionality is given by a temperature

(◦K).
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(θ,ϕ)-plane, centered around the point (θms,ϕms) and with sides of length ∆θ> + ∆θ< and
∆ϕ> +∆ϕ<. Notice that the point (θms,ϕms) is nothing but the direction of pointing of the
main spillover (that’s why we put the label ms). The analytical effect of this choice is that

∫
dΩBSL = fSL

∫ θms+∆θ>

θms−∆θ<

dθ sin θ
∫ ϕms+∆ϕ>

ϕms−∆ϕ<

dϕ . (2.7)

Considering that
∫ θms+∆θ>

θms−∆θ<

dθ sin θ cos θ =
1
2

sin (δ + 2∆θ<) sin (δ + 2 θms) , (2.8)
∫ θms+∆θ>

θms−∆θ<

dθ sin2 θ = ∆θ< +
δ

2
− 1

2
cos (δ + 2 θms) sin (δ + 2∆θ) , (2.9)

∫ ϕms+∆ϕ>

ϕms−∆ϕ<

dϕ cosϕ = 2cos
(
ϕms +

ε

2

)
sin

(
∆ϕ< +

ε

2

)
, (2.10)

∫ ϕms+∆ϕ>

ϕms−∆ϕ<

dϕ sinϕ = 2 sin
(
ϕms +

ε

2

)
sin

(
∆ϕ< +

ε

2

)
, (2.11)

with ε and δ implicitely defined by ∆θ> = ∆θ< + δ and ∆ϕ> = ∆ϕ< + ε, we can obtain the
final expression for the convolution:

I/fSL = T10

√
3
4π

1
2

sin (δ + 2∆θ) sin (δ + 2 θms) (2∆ϕ + ε)

−4
√

3
8π

(
∆θ +

δ

2
− 1

2
cos (δ + 2 θms) sin (δ + 2∆θ)

)

·
[
Re [T11] cos

(
ϕms +

ε

2

)
− Im [T11] sin

(
ϕms +

ε

2

)]
sin

(
∆ϕ +

ε

2

)
. (2.12)

Here we have made the notation ligther setting ∆θ< ≡ ∆θ and ∆ϕ< ≡ ∆ϕ. If the box is
symmetric (i.e. δ = 0 and ε = 0) and if the direction of the main spillover coincides with the
spin axis (i.e. (θms,ϕms) = (π/2,ϕs)), then the convolution becomes [1]

I = −
√

6
π

fSL [∆θ + cos∆θ sin∆θ] sin∆ϕRe
[
T11e

iϕs(t)
]

, (2.13)

where we have put explicitly the dependence on the time for ϕs. Notice that the term
proportional to T10 has dropped out in this simple case. In general, the T10-component does
not appear if δ+2θms(t) = nπ where n is an integer. If θms(t) = π/2−β(t) we have a perfect
vanishing (for n = 1) when β(t) = δ/2. This means that each time t = β−1(δ) we have a
compensation between the direction of the main spillover and the asymmetry of the box such
that the coefficient of T10-term, is vanishing.

2.2 Relation between main beam and main spillover

During the rotation of the main beam, the main spillover, if it is not lying on the spin axis,
draws a cone (see Fig.1). This means that the direction of the main spillover and of the main
beam are related by

θms =
π

2
− tan−1 (tanα cos θmb) , (2.14)

ϕms = ϕs + tan−1 (tanα sin θmb) , (2.15)

where θmb is the colatitude of the main beam, α is the angle at the vertex of the cone and
ϕs is the longitude of the spin axis (see also caption of Fig.1).
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Figure 1: Cone drawn by the direction of the main spillover (MS) during the rotation of
the main beam (MB). θmb is the angle between z axis and MB, ϕs is the angle in x-y plane
between x axis and spin axis (OS) and α is the angle between OS and MS.

In order to make realistic this simple model, we have to check that during the rotation,
the solid angle, subtended by the main spillover (Ωms), is constant. A simple computation
gives

Ωms = 4∆ sin∆ sin θms =
4∆ sin∆

√
1 + tan2 α cos2 θmb

, (2.16)

where (for simplicity) the square box (for the main spillover) in the beam pattern has been
considered. Of course eq. (2.16) is not constant because θmb is a function depending on time.
But in the limit of small α we obtain

Ωms = 4∆ sin∆
[
1 − 1

2
cos2 θmbα

2 + O
(
α4

)]
, (2.17)

that is constant (i.e. does not depend on θmb) at 0th and 1st order in α. This means that
the computation will be done up to linear order in α. Then eqs. (2.14,2.15) will be Taylor
expanded for small α, obtaining

θms =
π

2
− cos θmb α + O

(
α3

)
, (2.18)

ϕms = ϕs + sin θmb α + O
(
α3

)
. (2.19)

3 Building the map

The total signal that the satellite receives, is the sum of the two contributions:

T (θ,ϕ) = TMB(θ,ϕ) + ISL(θ,ϕ) , (3.1)

where TMB is the signal entering the main beam where the dipole has been subtracted away,
whereas ISL is the signal due to the dipole entering the spillover. For the first survey ISL is
given by

I(I)
SL(θ,ϕ) =






I(π/2 − α cos θ,ϕ + π/2 − α sin θ) for 0 < ϕ<π

I(π/2 − α cos θ,ϕ− π/2 + α sin θ) for π < ϕ < 2π
, (3.2)
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Figure 2: Sketch of the scanning during the first survey.

while, for the second survey

I(II)
SL (θ,ϕ) =






I(π/2 − α cos θ,ϕ− π/2 + α sin θ) for 0 < ϕ<π

I(π/2 − α cos θ,ϕ + π/2 − α sin θ) for π < ϕ < 2π
. (3.3)

The shift in the definition of ISL (during either the first or the second survey) comes from
the fact that when the main beam rotates from North to South the main spillover is shifted
of −π/2 plus a small correction proportional to α (due to the non perfect alignment of the
main spillover with the spin axis) while when the main beam rotates from South to North
the main spillover is shifted of +π/2 minus a small correction proportional to α (still due to
the non perfect aligniment of the main spillover with the spin axis). See Fig.2 for a sketch of
the scanning.

Notice that now (θ,ϕ) are referred to the main beam (we omitted the label mb to make
the notation ligher).

3.1 Computation of the T SL
lm due to ISL

As usual we expand the signal in spherical harmonics:

T (θ,ϕ) =
∑

lm

TlmYlm(θ,ϕ) , (3.4)

that implies

Tlm =
∫

dΩT (θ,ϕ)Y #
lm(θ,ϕ) , (3.5)

because of the completeness relation
∑

lm

Y #
lm(θ,ϕ)Ylm(θ′,ϕ′) = δ(θ − θ′)δ(ϕ − ϕ′)/ sin θ , (3.6)

or
∫

dΩY #
lm(θ,ϕ)Y #

l′m′(θ,ϕ) = δll′δmm′ . (3.7)
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We start supposing that the total signal comes from ISL. In other words we set, for the
time being, TMB = 0 and use eq. (3.5):

T SL
lm =

∫
dΩ ISL(θ,ϕ)Y #

lm(θ,ϕ) , (3.8)

where we rewrite the convolution as

I(θ,ϕ) = c1 sin(2θ) − (c2 − c3 cos(2θ)) (d1 cosϕ− d2 sinϕ) , (3.9)

with

c1 =
√

3/4π fSL∆ sin(2∆)T10 (3.10)

c2 = 4
√

3/8π fSL ∆ (3.11)

c3 = 4
√

3/8π fSL sin(2∆)/2 (3.12)
d1 = sin∆Re [T11] (3.13)
d2 = sin∆ Im [T11] . (3.14)

Here it has been chosen ε = δ = 0 and ∆θ> = ∆θ< = ∆ϕ> = ∆ϕ< = ∆ in eq. (2.12).

3.2 The computation of T SL
00

Specifying l = 0 and m = 0 we obtain

T SL
00 =

4√
π

d1(c2 + c3) + O
(
α2

)
. (3.15)

The monopole does not change up to the first order in α. Thus, we recover the result of
Ref. [1].

It is possbile to show that repeating the computation for the second survey [i.e. taking
into account I(II)

SL given in eq. (3.3)], one obtains TSL,(II)
00 = −T SL

00 . This means that the
average of the map (for the monopole) on two surveys is zero. This is in agreement with
the results of [1] because the computation at the linear order is equal to the computation at
zeroth order (i.e. α = 0).

3.3 The computation of T SL
1m

Specifying l = 1 and m = 0 we obtain

T SL
10 =

√
3
4π

2πc14
α

3
. (3.16)

For l = 1 and m = ±1 we have

T SL
1±1 =

√
3
8π

(±d1 + id2) (c2 + c3)4π
α

3
. (3.17)

This means that only in the simplified case [in which the spin axis is parallel to the direction
of the main spillover (i.e. α = 0)] we have that the map we are considering has no dipole
contribution. Since the dipole is important for the calibration, this systematic effect deserves
further investigation.

In this case repeating the computation for the second survey [i.e. using eq. (3.3)] it is
possible to show that one obtain the same result as the first survey: TSL,(II)

1m = T SL
1m for every

m. Thus, the average of the map (for the dipole) on the two surveys is exactly given by one
single survey.
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3.4 The computation of T SL
2m

Specifying l = 2 and m = 0, it is easy to obtain

T SL
20 = O

(
α2

)
, (3.18)

implying that it is vanishing at linear order in α. For m = ±1:

T SL
2±1 = 0 , (3.19)

where no expansion in α has been performed in order to obtain this result. For m = ±2:

T SL
2±2 = −

(4
3

)2
√

15
32π

(d1 ± 2id2) (c2 + c3) , (3.20)

where α does not appear at linear order [there are corrections of order O
(
α2

)
].

These results have been computed using the definition for of spherical harmonics for l = 2,
that we report here for sake of completeness [6]

Y 0
2 (θ,ϕ) =

√
5

16π
(3 cos2 θ − 1) , (3.21)

Y ±1
2 (θ,ϕ) = ∓

√
15
8π

e±iϕ sin θ cos θ , (3.22)

Y ±2
2 (θ,ϕ) =

√
15
32π

e±2iϕ sin2 θ . (3.23)

Eq. (3.20) is the (non vanishing) contribution to the quadrupole due to the dipole entering
the straylight. This is one of the main result of this note. We note that in the linear
approximation it does not show any dependence on α recovering the result obtained in [1].

3.5 The computation of T SL
3m

Setting l = 3, m = 0 and m = ±1, one obtains

T SL
30 = T SL

3±1 = O
(
α3

)
, (3.24)

For m = ±2 and m = ±3.

T SL
3±2 = T SL

3±3 = 0 , (3.25)

without expanding in α. This means that there is no contribution to the octupole.
These results have been computed using the spherical harmonics for l = 3, that we report

here for sake of completeness [6]

Y 0
3 (θ,ϕ) =

1
4

√
7
π

(−3 cos θ + 5cos3 θ) , (3.26)

Y ±1
3 (θ,ϕ) = ∓1

8

√
21
π

e±iϕ sin θ
(
−1 + 5 cos2 θ

)
, (3.27)

Y ±2
3 (θ,ϕ) =

1
4

√
105
2π

e±2iϕ sin2 θ cos θ , (3.28)

Y ±3
3 (θ,ϕ) = ∓1

8

√
35
π

e±3iϕ sin3 θ . (3.29)
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3.6 The computation of T SL
4m

Setting l = 4, m = 0 and m = ±1, one obtains

T SL
40 = T SL

4±1 = 0 , (3.30)

For m = ±2:

T SL
4±2 = −1

2

√
5
2π

(d1 ± 2id2)
8
15

(c2 + c3) + O
(
α2

)
. (3.31)

For m = ±3:

T SL
4±3 = 0 . (3.32)

For m = ±4:

T SL
4±4 = − 12

225

√
35
2π

(d1 ± 4id2) (c2 + c3) + O
(
α2

)
. (3.33)

These results have been computed using the definition for of spherical harmonics for l = 4,
that we report here for sake of completeness [6]

Y 0
4 (θ,ϕ) =

3
16
√

π
(3 − 30 cos2 θ + 35 cos4 θ) , (3.34)

Y ±1
4 (θ,ϕ) = ∓3

8

√
5
π

e±iϕ cos θ sin θ
(
−3 + 7 cos2 θ

)
, (3.35)

Y ±2
4 (θ,ϕ) =

3
8

√
5
2π

e±2iϕ sin2 θ
(
−1 + 7 cos2 θ

)
, (3.36)

Y ±3
4 (θ,ϕ) = ∓3

8

√
35
π

e±3iϕ cos θ sin3 θ , (3.37)

Y ±4
4 (θ,ϕ) =

3
16

√
35
2π

e±4iϕ sin4 θ . (3.38)

3.7 Comparison among CSL
l with low l

As in [1] we consider

fSL =
∫

dΩBSL

4∆ sin∆
=

p

4∆ sin∆
, (3.39)

where p is the relative power entering the main spillover with respect to the total (i.e. essen-
tially entering the main beam). By the definition of CSL

l :

CSL
l =

1
2l + 1

l∑

m=−l

(
T SL

lm

)#
T SL

lm , (3.40)

we compute

CSL
0 = 6

(
p

π

)2

f(∆)Re [T11]2 , (3.41)

CSL
1 =

α2p2

3

[
cos2 ∆T 2

10 +
1
2
f(∆)|T11|2

]
, (3.42)
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CSL
2 =

2
9

(
p

π

)2

f(∆)
(
Re [T11]2 + 4Im [T11]2

)
, (3.43)

CSL
4 =

1
9

(
p

π

)2 64
375

f(∆)
(

Re [T11]2 +
53
8

Im [T11]2
)

, (3.44)

where

f(∆) =
(

1 +
sin∆
∆

cos∆
)2

,

We choose ∆ = π/10 and p = 1/100. Moreover it is possible to show [1, 7] that

Im [T11] = 0.69823mK , (3.45)
T10 = −1.32225mK , (3.46)

Re [T11] = 4.69963mK . (3.47)

Here we give some numerical results. For α = π/36 we have

CSL
0 = 0.0050299mK2 (3.48)

CSL
1 = 0.000011135mK2 (3.49)

CSL
2 = 0.00020274mK2 (3.50)

CSL
4 = 0.000018222mK2 (3.51)

and then the ratios:

CSL
0 /CSL

1 = 451.73 (3.52)
CSL

2 /CSL
1 = 18.208 . (3.53)

(3.54)

For α = π/18 we have

CSL
0 = 0.0050299mK2 (3.55)

CSL
1 = 0.000044539mK2 (3.56)

CSL
2 = 0.00020274mK2 (3.57)

CSL
4 = 0.000018228mK2 (3.58)

and then the ratios:

CSL
0 /CSL

1 = 112.93 (3.59)
CSL

2 /CSL
1 = 4.5520 . (3.60)

(3.61)

4 Effects on the CMB power spectrum

Some qualitative considerations on the low multipoles are listed here.

• The monopole is not touched at all by the shift of the spin axis up to the first order in
α,

• We note that contrarily to what happened in [1], now, with α != 0, there is a contamina-
tion of the dipole itself. This could have some important consequences on calibrations
based on the kinematic dipole.
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• For what concerns the quadrupole, at the order we are performing the expansion (linear
in α in temperatures and quadratic in α in angular power spectrum) the analysis we
did in [1] is still fully valid, since the computation with α != 0 is the same as α = 0.

• The octupole is not touched at all by this effect.

• The esadecapole presents a contamination due to this systematic effect that does not
depend on α (at the order we are performing the computation).

5 Conclusion

We have extended our previous analytical model [1] where the straylight contamination due
to kinematic CMB dipole pattern was studied. The generalization we took into account is
given by the splitting between the direction of the main spillover and the spin axis (for a
simple case with the main spillover centre in the plane defined by the telescope axis and the
spin axis). We called α the angle between them.

We have shown that the map computed from this effect has intrinsic dipole (proportional
to α) while the intrinsic quadrupole is untouched by α at first order. Moreover we have seen
that there is no intrinsic octupole (even with α != 0) while there is an intrinsic esadecapole
(even with α = 0).

Since the quadrupole is untouched by this generalization, the analysis we did in [1] remains
valid also in this case where spin axis and direction of the main spillover are not parallel.
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