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SUMMARY – In this report we describe the fundamental approach and, in par-
ticular, the recent update to recent NAG versions of a numerical code, KYPRIX,
specifically written for the solution of the Kompaneets equation in cosmologi-
cal context, first implemented in the years 1989-1991, aimed to the very accu-
rate computation of the cosmic microwave background spectral distortions under
quite general assumptions. Specifically, we discuss the main subdivisions of the
code and the most relevant aspects about technical specifications and code imple-
mentation. After a presentation of the equation formalism and of the boundary
conditions added to the set of ordinary differential equations derived from the
original parabolic partial differential equation, we provide details on the adopted
space (i.e. dimensionless frequency) grid, on the output results, on the accuracy
parameters, and on the used integration routines. The problem of introducing the
time dependence of the ratio between electron and photon temperatures and of
the radiative Compton scattering term, both of them introducing integral terms
in the Kompaneets equation, is addressed in the specific context of the recent
NAG versions. Finally, we describe the introduction of the cosmological constant
in the terms controlling the general expansion of the universe, in agreement with
the fundamental discoveries of the last years.
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1 Introduction

The CMB spectrum emerges from the thermalization redshift, ztherm ∼ 106 − 107, with a
shape very close to a Planckian one, owing to the tight coupling between radiation and matter
through Compton scattering and photon production/absorption processes, radiative Comp-
ton and bremsstrahlung. These processes were extremely efficient at early times and able to
re-establish a blackbody (BB) spectrum from a perturbed one on timescales much shorter
than the expansion time (see, e.g., Danese & De Zotti 1977). The value of ztherm (Burigana
et al. 1991) depends on the baryon density parameter, Ωb, and the Hubble constant, H0,
through the product Ω̂b = Ωb(H0/50)2 (H0 expressed in Km/s/Mpc).

On the other hand, physical processes occurring at redshifts z < ztherm may lead im-
prints on the CMB spectrum. Therefore, the CMB spectrum carries crucial informations on
physical processes occurring during early cosmic epochs (see, e.g., Danese & Burigana 1993
and references therein) and the comparison between models of CMB spectral distortions and
CMB absolute temperature measures can constrain the physical parameters of the considered
dissipation processes.

The timescale for the achievement of kinetic equilibrium between radiation and matter
(i.e. the relaxation time for the photon spectrum), tC , is

tC = tγe
mec2

kTe
# 4.5 × 1028 (T0/2.7K)−1 φ−1Ω̂−1

b (1 + z)−4 sec , (1)

where tγe = 1/(neσT c) is the photon–electron collision time, φ = (Te/Tr), Te and Tr =
T0(1 + z) being respectively the electron and the CMB radiation temperature; kTe/mec2

(being me the electron mass) is the mean fractional change of photon energy in a scattering
of cool photons off hot electrons, i.e. Te % Tr; T0 is the present radiation temperature related
to the present radiation energy density by εr0 = aT 4

0 (here a = 8πI3k4/(hc)3, I3 = π4/15); a
primordial helium abundance of 25% by mass is here assumed.

It is useful to introduce the dimensionless time variable ye(z) defined by

ye(z) =
∫ t0

t

dt

tC
=

∫ 1+z

1

d(1 + z)
1 + z

texp

tC
, (2)

where t0 is the present time and and texp = 1/H = 1/[(da/dt)/a] is the expansion time,
a = 1/(1 + z) is the cosmic scale factor normalized to the present time.

As particular cases, by neglecting the cosmological constant (or dark energy) contribution
we have

texp # 6.3×1019

(
T0

2.7K

)−2

(1+z)−3/2

[
κ(1 + z) + (1 + zeq) −

(
Ωm − 1

Ωm

)(
1 + zeq

1 + z

)]−1/2

sec ,

(3)
where zeq = 1.0 × 104(T0/2.7K)−4Ω̂m is the redshift of equal non relativistic matter and
photon energy densities and κ = 1 + Nν(7/8)(4/11)4/3 , Nν being the number of relativistic,
2–component, neutrino species (for 3 species of massless neutrinos, κ # 1.68), takes into
account the contribution of relativistic neutrinos to the dynamics of the universe1, while
assuming ΩK = 0, ΩΛ = 1 − Ωm, and neglecting the radiation energy density, as possible at
relatively low redshifts, we have

texp # (1/H0)
[
Ωm(1 + z)3 + 1 − Ωm

]−1/2 sec , (4)

1Strictly speaking the present ratio of neutrino to photon energy densities, and hence the value of κ, is itself
a function of the amount of energy dissipated. The effect, however, is never very important and is negligible
for very small distortions.
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where 1/H0 # 3.1 × 1017h−1 sec (h = H0/100).
The time evolution of the photon occupation number, η(ν, t), under the combined effect

of Compton scattering and of photon production processes, namely radiative Compton (RC)
(Gould 1984), bremsstrahlung (B) (Karsaz & Latter 1961, Rybicki & Lightman 1979) plus
other possible contributions (EM), is well described by the complete Kompaneets equation
(Kompaneets 1956, Burigana et al. 1995):

∂η

∂t
=

1
φ

1
tC

1
x2

∂

∂x

[
x4

[
φ
∂η

∂x
+ η(1 + η)

]]
+

[
∂η

∂t

]

RC

+
[
∂η

∂t

]

B

+
[
∂η

∂t

]

EM

. (5)

This equation is coupled to the time differential equation governing the electron temperature
evolution for an arbitrary radiation spectrum in the presence of Compton scattering, energy
losses due to radiative Compton and bremsstrahlung, adiabatic cooling, plus possible external
heating sources, q = a−3(dQ/dt),

dTe

dt
=

Teq,C − Te

(27/28)teγ
− 2Te

texp
+

[
dTe

dt

]

RC,B

+
(32/27)q

3nek
; (6)

here Teq,C = [h
∫
η(1+η)ν4dν]/[4k

∫
ην3dν] is the Compton equilibrium electron temperature

(Peyraud 1968, Zeldovich & Levich 1968), teγ = 3mec/4σT εr, εr # εr0(1 + z)4 being the
radiation energy density, and x is the dimensionless frequency x = hν/kT0 (ν being the
present frequency).

Partial differential linear equations are divided in three classes: elliptic, parabolic and
hyperbolic. The Kompaneets equation is a parabolic partial differential equation (Tricomi
1957). Solutions to this equation under general conditions have to be searched numerically,
because it is impossible to find analytical solutions that accurately take into account the
many kinds of cosmological scenarios and the great number of relevant physical processes.
The numerical code KYPRIX (Burigana et al. 1991) was written to overcome the limited
applicability of analytical solutions and to get a precise computation of the evolution of
the photon distribution function for a wide range of cosmic epochs and for many cases of
cosmological interest. KYPRIX makes use of the NAG libraries.

Of course, many dedicated routines have been written and available numerical algorithms
have been used in this code. Among the latters, the D03PCF routine (of the current version,
corresponding to D03PGF routine used the first versions of KYPRIX), has been used to
reduce the Kompaneets equation into a system of ordinary differential equations. In order to
use this routine, we have to put the Kompaneets equation in the form

NPDE∑

j=1

Pi,j
∂Uj

∂t
+ Qi = x−m ∂

∂x

(
xmRi

)
; (7)

in our case Pi,j = 1 and m = 0 (Cartesian coordinates). Moreover, the function Ri is
determined only by the inverse Compton term while the other physical processes, i.e. at least
Compton scattering, Bremsstrahlung, and radiative Compton, are included in the function
Qi. In order to reduce Eq. (7) into a system of ordinary differential equations, the D03PCF
routine uses the method of lines: pratically, the right member of Eq. (7) is discretized,
reducing the calculation of partial derivatives in terms of finite values of the solution vector
U at all the points of the x axis grid. Spatial discretization is made by the method of finite
differences (Mitchell & Griffiths, 1980). The Gear’s method (Gear 1971) is used to resolve
the system of ordinary differential equations. The variables that enter in this equation are
introduced and used in logarithmic form (log(x) and log(η)), to have a good and essentially
uniform accuracy of the solution in the whole considered frequency range. The choice of
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the time parameter was driven by the need to have a very simple form of the Kompaneets
equation. Finally, a “temperature independent” (time) Comptonization parameter

y(t) =
∫

dye

φ
=

∫ t

ti

neσT c
kTr

mc2
dt′ , (8)

has found to be particularly advantageous (Burigana et al. 1991).

2 Boundary conditions

Integrating equations of the type of Eq. (7) means to calculate the time evolution of
the function U(x, t), for a given initial condition U(x, 0) (in fact, the problem is also called
“problem at initial conditions”). Numerically, the derivatives of U are replaced by finite
differences between values of U computed for a grid of points (in x, t) and the differential
equation is replaced by a system of more simple equations. However, in presence of the only
initial condition, this system is singular (Press et al. 1992). For this reason, resolving partial
differential parabolic equations needs boundary conditions: the problem is at initial values
for the t variable and at the boundary values for the x variable. In general, boundary condi-
tions mean additional relations to join to the system derived from the discretization to finite
differences, to the aim of having the same number of equations and unknowns.

Therefore, a good statement of the problem needs the definition of appropriate boundary
conditions and, possibly, the capability of a refresh of this conditions along the time integra-
tion leads more stability to the solution evolution because of the evolution of the radiation
field. Thanks to the opportunity of having the correct value of φ for each time step, the
update of the boundary conditions can be physically motivated.

The limits of the frequency range considered are: log(xmin) = −4.3 e log(xmax) = 1.7. Of
course, we want a solution of the Kompaneets equation over all the frequency range where it
is possible to measure the CMBR and, in addition, a frequency range large enough to contain,
in practice, all the energy density of the cosmic radiation field.

Also, the frequency range is so wide for two other reasons.
During the time evolution, some spurious oscillations of the solution at points close to

the boundaries may appear (this effects, that could also occur independently of the need
of refreshing φ – for example for cases at constant φ –, may be partially amplified if, for
computational reasons discussed in the following, the necessary refresh of the electronic tem-
perature is not made for every time step). Fixing the frequency integration range limits far
from the interval where we are interested to compute the photon distribution function allows
to prevent the “contamination” of the solution by this possible spurious oscillations in the
frequency range of interest.

Finally, since we can generally assume that a Planckian spectrum at xmin is formed before
recombination in a timescale shorter than the expansion time and, on the contrary, at xmax

the shape of the spectrum is unknown, it has been implemented in the code the possibility to
adopt a particular case of Neumann boundary conditions: the requirement that the current
density, in the frequency space, is null at the boundaries of the integration range (Chang &
Cooper, 1970): [

φ
∂η

∂x
+ η(1 + η)

]

x=xmin,xmax

= 0 .

This choice of boundary conditions formally satisfies the requirement of the problem when
we integrate the Kompaneets equation in the case of Bose-Einstein like distorsions (with a
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variable chemical potential µ). In fact, such distorted spectra are indistinguishable from a
blackbody spectrum at sufficiently high and at low frequencies.

Of course, it is possible to make a different choice of the boundary conditions by selecting
Dirichlet like conditions. In this case the photon occupation number at the boundaries of the
integration interval does not change for the whole integration time. (In general cases, keeping
constant conditions at the boundaries could be dangerous for the continuity of the solution.
Nevertheless, for some specific problems this condition can work – typically for problems with
constant φ).

3 A detailed view on KYPRIX

The code KYPRIX has been written to solve the Kompaneets equation in many kinds of
situations. The physical processes that can be considered in KYPRIX are: Compton scat-
tering, bremsstrahlung, radiative Compton scattering, sources of photons, energy injections
without photon production, energy exchanges (heating or cooling processes) associated to
φ &= 1 at low redshifts, radiative decays of massive particles, and so on. Being very versatile,
this code could be easily implemented to consider other kinds of physical processes.
The data are saved into five files.
DATI. This file contains the information about the specific parameters of the considered
problem with a general description of its main aspects.
DATIP. In this file we give the evolution of interesting quantities, like time, redshift, φ, and
many another quantities inherent to physical and numerical aspects of the problem.
DATIG. It contains: the points grid for the x axis used by the main program (remember that
we are using a dimensionless frequency), a Planckian spectrum at temperature T0 and the
solution vector U (that is to say log(η)) at y = 0 (starting time).
DATIDE. This is the fundamental output file: it gives the solution of the Kompaneets equa-
tions at the desired cosmic epocs.
DATIT. It is similar to the file DATIDE, but it contains the solution in term of brightness
temperature (i.e. equivalent thermodynamical temperature).

3.1 Main subdivisions

The code is divided in several sections and, from a general point of view, is structured as
described here below.
1. Main program, in which many actions can be carried out: choice of the physical processes,
choice of the cosmological parameters, characteristics of the numerical integration (accuracy,
number of point of the grid, ...), time interval of interest, choice of the boundary conditions,
and so on.
2. Subroutine PDEDEF. It is the subprogram where the problem is numerically defined.
This subroutine is also divided in subsections to allow modifications in a simple and practical
way.
3. Subroutine BNDARY. Here the boundary conditions are numerically specified.
4. Subroutines and auxiliary functions to perform specific operations.
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3.2 Technical specifications and code implementation

Written in the 1990 by Carlo Burigana, the KYPRIX first version worked with the Mark
8 version of the NAG numerical library and were based on the routine D03PGF. The version
of the NAG numerical library currently distributed is the Mark 20. Therefore an update of
the KYPRIX code is necessary to adapt it to this new package.

Just started, KYPRIX asks all the input data, from the specifications of the output files
to the integration features. In the following subsections we give a description of the various
aspects of the code (and code update) more relevant for its understanding and usage.

3.2.1 Grid

The frequency integration interval is divided in a grid of points (the mesh points): larger
the number of points smaller the adopted frequency step.
It is possible to used a very dense grid (for example 36001 mesh points corresponding to
36000 frequency steps). In general, it is necessary to use at least 3001 mesh points to have a
solution accurate enough.

We found an important difference between the two NAG versions, not reported in the
documentation of the routine D03PCF. In the first version (D03PGF), the subroutine where
the partial differential equation is defined adopted the same mesh points defined in the main
program. In the Mark 20 version the calculation is carried out in a different manner: the
mesh points used in the subroutine PDEDEF is shifted of half spatial step with respect to the
mesh defined in the main program. In this way, the mesh points in the PDEDEF subroutine
will be exactly in the middle of the steps defined in the grid of the main program. For this
reason, the limit of the integration interval are not considered in the mesh points in the
subroutine PDEDEF and they are used only for the boundary conditions.
The effect of this feature implies the definition of new parameters that play a fundamental role
in the subroutine PDEDEF. The integral quantities in the Kompaneets equation (necessary
to define the radiative Compton term in the kinetic equations and the electron temperature)
are computed once for any time step, inside the PDEDEF subroutine. For this computation,
arrays of dimension equal to the number of mesh points of the x variable as defined in the
PDEDEF subroutine are used. Therefore, a particular care must be taken in the definition
of the dimension of the arrays defined in KYPRIX. Those used in the main program have
dimension equal to the number of points of the mesh defined in the main program. The same
dimension is given for the arrays defined for the boundary conditions. On the other hand,
the major number of arrays are used in the PDEDEF subroutine to compute the integral
quantities. The “inner” grid adopted in the PDEDEF subroutine is based on mesh points in
the middle of the spatial steps of the main program grid, so the two grids can not work with
the same point number; in fact, the arrays used in the PDEDEF subroutine have dimension
NPTS − 1. Therefore, in the main program and in the subroutine BNDARY we have to
work with arrays based on the formula:

X(I) = A + (I − 1) × (B − A)
(NPTS − 1)

, with 1 ≤ X ≤ NPTS ,

to define the correspondence between the grid of NPTS points and the x position, while we
need another expression able to shift of half step the grid in the PDEDEF subroutine and
based on NPTS − 1 mesh points:

X(I) =

(

A + (I − 1) × (B − A)
(NPTS − 1)

)

+

(
(B − A)

2(NPTS − 1)

)

,
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with 1 ≤ X ≤ NPTS − 1.

For continuity reasons, we need to define (according to the choices made in the main program)
the solution vector, containing the photon initial distribution function, at the beginning of
the integration also according to this grid definition. This vector is used by the PDEDEF
subroutine as initial spectrum adopted for the computation of the rates of the physical pro-
cesses and, of course, it is then renewed at every time step incrementation.

3.2.2 Output

Concerning the output files, the update version of KYPRIX stores a new vector containing
the “inner” x grid used by the PDEDEF subroutine, XXGR (XGR refers to the main program
grid).

In addition, we preferred to have the possibility to perform the conversion of the solution
into equivalent thermodynamic temperature directly into the code and save it in a new output
file (DATIT). The conversion relation is:

Tterm,equiv =
xT0

ln(1 + 1/η)

(we remember that in the code X = log10(x) and U = log10(η)).
The fundamental reason to perform this conversion directly in the code is associated to the
extreme accuracy required for the solution in the case of very small distorsions, of particular
interest given the FIRAS results (Fixsen et al. 1996). During the first tests, the conversion
of the solution in brightness temperature was performed at the same time of the solution
visualization, through the IDL visualization program. The saving of the solution into files is
typically performed not for all the points of the grid but for a reduced grid of, for example,
300 equidistant points along the original grid to avoid to store files of large size, unuseful for
our scope, given the interest for the CMB continuous spectrum (by definition, the Kompa-
neets equation is not appropriate to treat recombination lines). If the considered distorsions
were very small then the solution at each specific “inner” grid point could be affected by
a numerical uncertainty not negligible in comparison with the very small deviations from a
Planckian spectrum relevant in this cases. This numerical error is greatly reduced (becoming
negligible for our purposes) by the averaging over a suitable number of grid points. Of course,
the storing of the solution directly on a limited number of grid points makes this averaging
no longer possible on the stored data. It were then necessary to average the solution values in
intervals corresponding to the output x grid directly into the code. Anyway, in many circum-
stances the diagram shape derived applying the conversion to brightness temperature only on
the stored averaged solution still deviates at high frequencies from the effectively computed
solution displayed by considering all the “inner” grid points because of the high gradients
in the photon distribution function and/or in the brightness temperature that makes diffi-
cult, or impossible, to find a general rule for the solution binning that simultaneously works
properly for the two solution representations. This problem is avoided converting the so-
lution vector in equivalent thermodynamic temperature before of the binning of its values
and then applying the binning to the equivalent thermodynamic temperature. The result is
then a brightness temperature diagram very clean and precise, even for very small distortions.

Other minor changes are made about the output data, where we passed from real to
double precision, and for the saving frequency into the output files.
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3.2.3 Equation formalism

A necessary update of the code has been performed to adapt it to the different formalism
adopted by the new version of the NAG routine. This regards the expression of the Kompa-
neets equation in the PDEDEF subroutine. In particular, the D03PGF adopted the following
expression of the partial differential equation:

Ci
∂Ui

∂t
= x−m

NPDE∑

j=1

∂

∂x

[

xmGij
∂Uj

∂x

]

+ Fi ,

where i = 1, 2, ..., NPDE (number of partial differential equations); Ci, Fi depends on
x, t, U, ∂U/∂x; Gi,j depends on x, t, U and U is the set of solutions values (U1, U2, ..., UNPDE).
The expression now adopted by the D03PCF routine is instead:

NPDE∑

j=1

Pi,j
∂Uj

∂t
+ Qi = x−m ∂

∂x

(
xmRi

)
,

where Pi,j, Qi, Ri depends on x, t, U, ∂U/∂x and the vector U is defined as above. Please note
that Pi,j, Qi, Ri do not depend on ∂U/∂t.
Translating the code from the old to the new formalism is not very difficult. In the considered
case NPDE = 1. In this case, we have simply that R1 contains both the function G1 and
the vector solution derivative with respect to x according to:

R1 = G11 ×
∂U1

∂x
.

At this point, it is necessary to apply only the following substitutions:

Q1 = −F1 and P11 = C1 .

3.2.4 Boundary conditions

Also notable are the differences between the input expressions defining the boundary
conditions. The D03PGF routine adopted an expression of the form:

Pi(t)Ui + Qi(t)
∂Ui

∂x
= Ri(t, U) ,

where i = 1, 2, ..., NPDE and Pi(t), Ri(t, U), Qi(t) are functions to be defined. A quite
different notation is used to provide the boundary conditions in the D03PCF routine:

βi(x, t)Ri(x, t, U, Ux) = γi(x, t, U, Ux) ,

where i = 1, 2, ..., NPDE and βi(x, t)Ri(x, t, U, Ux) and γi(x, t, U, Ux) are functions to be
defined (Ux ≡ ∂U/∂x).
As a consequence of this notation, Neumann like boundary conditions can be now specified
according to the expression:

β(1) = 1

γ(1) = −XV A × (10U(1) + 1) × ln10−2

where XV A = η computed in A and the dimension of both the equations corresponds to
the differential equation number. Similar conditions are defined for the other extreme of the
integration interval [A,B].
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3.2.5 Accuracy parameters

Another considerable difference between the two library versions regards the definition of
the integration accuracy parameter. D03PGF used three parameters for monitoring the local
error estimate in the time direction, supplying a good versatility. RELERR and ABSERR
were respectively the quantity for the relative and absolute component to be used in the
error test. The third parameter, INORM, was used to define the error test. If E(i, j) is the
estimated error for Ui (the vector solution) at the j − th point of the x grid, then the error
test was:

• INORM = 0 =⇒| E(i, j) |≤ ABSERR + RELERR× | U(i, j) |

• INORM = 1 =⇒| E(i, j) |≤ ABSERR + RELERR × maxy | U(i, j) |

• INORM = 0 =⇒ ‖E(i, j)‖ ≤ ABSERR + RELERR × ‖U(i, j)‖ .

Instead, according to the new library version we have to define only one parameter ACC, a
positive quantity that monitors the local error in the time integration. If E(i, j) is defined as
above, then the error test is:

| E(i, j) |= ACC × (1+ | U(i, j) |) .

3.2.6 Electron temperature

During the numerical integration, some subprograms use the distribution function calcu-
lated at that time to compute φ. The integrals to be computed are those that we find in the
expression for φeq,C :

φeq,C =
Te

Tγ
=

∫ ∞
0 η(η + 1)x4dx

4
∫ ∞
0 ηx3dx

.

In this calculation, the integration range is obvioulsy the integration interval considered for
the problem: A ≤ x ≤ B (that, in terms of mesh ordering, corresponds to the range between
1 and NPTS or NPTS−1). For computing these integrals, all the points of the grid are used.
The integration is based on the NAG D01GAF routine, suitable for tabulated functions. Of
course, the update value of φ is also used in the boundary conditions.

In the previous version of the KYPRIX code, the computation of integral quantities
were performed through a specific modification of the NAG package implemented by the
KYPRIX code author that allowed to recover the whole vector solution at each time step in the
subroutines (and in particular in PDEDEF), while the original package maked only available
in PDEDEF the solution separately at each grid point (being in fact the package originally
designed for “pure” partial differential equation, without terms involving on integrals of the
solution). This modification, possible thanks to the availability of the NAG sources (and, in
practice, thanks to the relative simplicity of the early library versions), permitted to update
the integral quantities perfectly according to the “implicit” scheme adopted by the code for
the integration in time. This is no longer feasible. Therefore, the update of the integral
quantities must be now performed with a “backward” scheme, saving the solution at the
previous time step in a proper vector and using it in the computation at the given time step.
As well known, “backward” schemes are typically less stable than implicit schemes. And, in
fact, we verified the impossibility of the D03PCF routine to work implementing the update
of the quantities corresponding to the integral terms in the Kompaneets equation (and in
particular of φ) for each time step. This were likely due to numerical instabilities.

We have then introduced a new integer control parameter into the code: STEPFI. It
determines the frequency for the update the dimensionless electron temperature φ, relevant,
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of course, in the case we want to perform an integration with a variable φ. We have checked
that updating the integral terms in the Kompaneets equation not at every time step, but
after a suitable number of time steps does not affect the accuracy of the solution. This is due
to the fact that the time increasing in the code is performed with very small steps while the
physical variation of φ occurs on longer timescales 2.

3.2.7 Radiative Compton

In the computation of the radiative Compton term there is an integral term, so it is nec-
essary to harmonize its update according to the parameter STEPFI discussed in the previous
subsection. In fact, a possible asynchronous update of it and φ could create numerical insta-
bilities and the crash of the code run, as physically evident from the great relevance of both
radiative Compton term and electron temperature for the evolution of low frequency region
of the spectrum.

3.2.8 Integration routines

Different numerical integration routines can make similar tasks, but this is made with
different algorithms. Inside KYPRIX we find a practical example: in the early release of the
code the NAG D01BDF routine was used to calculate integrals of a function over a finite
interval. The same task can be carried out by the D01AJF routine. Anyway, this code of-
fers a better accuracy than D01BDF (D01AJF is in fact suitable also to integrate functions
with singularities, both algebric and logarithmic). After the routines substitution, the results
showed a great increasing of accuracy. In particular, this improvement offers the possibility
to investigate also very small distortions that requires a very precise determination of all
the relevant quantities because the absolute numerical error of the integration must be much
smaller than the (very small quantities) of interest in these cases. In particular, the quantity
∆εr/εi (where εr is the actual density energy and εi is the energy density corresponding to the
imperturbed distribution function just before the energy injection) must be constant during
all the integration process in the absence of energy injection terms, according to the energy
conservation. The precision increase on the computation of this quantity was noteworthy,
keeping now always inside a few percent of the physical value (and its possible physical vari-
ation) of the same quantity independently of the magnitude of the considered distortion,
allowing to accurately check the global accuracy of the code and assuring that the integral
terms appearing in the Kompaneets equation are properly computed (this is a remarkable
result, because the code can now be used also for very small distortions).

4 The introduction of the cosmological constant

Up to the about 10 years ago the favourite cosmological models were CDM or CHDM
models. In the recent years the relevance of the cosmological constant term (or of dark
energy contributions) has been renewed by a wide set of astronomical and cosmological ob-
servables. The numerical integration code KYPRIX has been then updated to include the
cosmological constant in the terms controlling the general expansion of the universe. In
particular the input background cosmological parameters considered in the code are now:

2Of course, for physical processes with a stronger variation of the electron temperature, the accuracy
parameter (see previous subsection) should be good enough to force the code to adopt sufficiently small time
steps.

11



T0,κ, h[= H0/(100Km/s/Mpc)],Ωm,Ωb,ΩΛ,ΩK , i.e. the present CMB temperature, the con-
tribution of massless neutrinos, the Hubble constant, the (non relativistic) matter and baryon
energy density, the energy densities corresponding to cosmological constant and curvature
terms.
In order to compute the proper cosmic evolution of the various terms we introduced a scale
factor parameter ω (Silk & Stebbins 1983), defined by:

ω =
a

a1
≡ mec2

kT0

1
1 + z

= 1.98 × 109Θ(1 + z)−1,

with Θ ≡ T0/3◦K and the index 1 is referred to a particular epoch, when the CMB energy
density was equal to the electron mass: kT (a1) = mec2. So the parameter ω is analogous
to the scale factor a, but normalized at the epoch in which a = a1, that is to say when
kT = mec2. To write a suitable expression for its time evolution we have to introduce two
new key parameters

β =
ρm1

ρr1
= 3.5 × 10−6 h2

Θ3
Ωtot

that is the initial ratio between matter energy density and radiation energy density, and

1
τg1

=
(

8π
3

Gρr1

)1/2

=
[
8π
3

G
a

c2

(
mec2

k

)4]1/2

= 0.076s−1

defined as a initial gravitational time scale. The quantities with the index 1 refer to the epoch
when a = a1, with the index 0 when t = t0 (today); ρr1 and ρm1 are related to ρr and ρm by

ρr = ρ0r

(
ωo

ω

)4

= ρr1
1
ω4

; ρm = ρ0m

(
ω0

ω

)3

= ρm1
1
ω3

,

respectively.
Now we can define an equation for the evolution of ω:

ω̇

ω
=

[
8π
3

Gρ(ω)
]1/2

=

8π
3

G

[
ρr1κ

ω4
+

ρm1

ω3
+

ρK1

ω2
+ ρΛ

]
,

where we have included the contribution of massless relativistic neutrinos in the term κ (see
also footnote 1; the term κ should be properly evaluated considering also possible energy in-
jections after neutrino decoupling.) Then let us redefine the key parameters for the evolution:

β =
ρm1

ρr1κ
;

1
τg1

=
(

8π
3

Gρr1κ

)1/2

.

With this relations we can write the evolution expression for ω:

ω̇

ω
=

1
τg1

[
1
ω4

+ β
1
ω3

+ β
ρK1

ρm1ω2
+ β

ρΛ

ρm1

]1/2

,

equivalent to:

ω̇ =
ω

τg1

{
1
ω4

[
1 + βω

(
1 +

ρK1ω

ρm1
+

ρΛω3

ρm1

)]}1/2

.
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Let’s now consider the ratio ρK1
ρm1

ω and let’s write it in a more useful way:

ρK1

ρm1
ω =

(
ρK1

ω2
1

ω2
0

)

(
ρm1

ω3
1

ω3
0

)
ω2

0
ω2

1

ω3
0

ω3
1

ω =
ρK0

ρm0

(
ω1

ω0

)
ω .

By the definition of ω we have that ω1 = 1, while ω0 is the value that it assumes today.
Through this relations we can finally write the completed and updated expression of dt

dω :

1
ω̇

=
τg1 ω

[
1 + β ω

(
1 + ΩK/m ω

2.164×109 + ΩΛ/m ω3

2.164×1027

)]1/2
,

where Ωx/y = Ωx
Ωy

.
The equation for ω̇ has to be inserted in the expression giving dy = acdt, which is inside the
integral used to compute the time variable y(ω) =

∫ ω
ωstart

dy because we set y = 0 when the
integration starts at ω = ωstart (or equivalently at z = zstart). Finally, the expression for the
time evolution of ω and y are related by the variable change:

dy = acdt = ac
dt

dω
dω = ac

ω

ω̇

1
ω

dω ,

where ac = φ/(τc1ω4) (τc1 = 2.638 × 10−9 Θ3/(h2Ωb)).
Introducing the cosmological constant and curvature terms, the code KYPRIX is suitable to
be applied to interesting cases at low redshifts, where Λ supplies the greatest contribution
to the expansion rate of the universe evolution (remarkable examples are spectral distortions
associated to the reionization of the universe).

5 Conclusion

We have described the fundamental numerical approach and, in particular, the recent
update to recent NAG versions of a numerical code, KYPRIX, specifically written for the
solution of the Kompaneets equation in cosmological context, aimed to the very accurate
computation of the cosmic microwave background spectral distortions under quite general
assumptions. Specifically, we have discussed the main subdivisions of the code and the most
relevant aspects about technical specifications and code implementation. After a presenta-
tion of the equation formalism and of the boundary conditions added to the set of ordinary
differential equations derived from the original parabolic partial differential equation, we have
given details on the adopted space (i.e. dimensionless frequency) grid, on the output results,
on the accuracy parameters, and on the used integration routines. The introduction of the
time dependence of the ratio between electron and photon temperatures and of the radiative
Compton scattering term, both introducing integral terms in the Kompaneets equation, has
been addressed in the specific context of the recent NAG versions by discussing the solution
adopted to solve the various related technical problems. We have described also the intro-
duction of the cosmological constant in the terms controlling the general expansion of the
universe, in agreement with the fundamental discoveries of the last years.

Finally, we have reported in Figs. 1–3 the input parameter files to run the code for three
representative cases of cosmological interest, the evolution of an early Bose-Einstein spec-
trum, of a Comptonization spectrum formed at intermediate cosmic epochs, and of a simple
representation of a late dissipation process roughly mimicking the effect of a heating source
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associated to the reionization of the universe. In forthcoming works we will present detailed
reports on the accuracy and performance of the code and on some remarkable applications
aimed to illustrate the code versatility.

Acknowledgements – Some of the calculations presented here have been carried out on an
alpha digital unix machine at the IFP/CNR in Milano by using some NAG integration codes.
C.B. warmly thanks L. Danese, G. De Zotti, and R. Salvaterra for constructive discussions
and collaborations.
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Figure 1: Example of input parameters to run the KYPRIX code. This case corresponds to
an integration of the Kompaneets equation starting from a Bose-Einstein spectrum.
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Figure 2: This set of parameters has been used to integrate the Kompaneets equation starting
from intermediate epochs; the initial condition is a Comptonization spectrum.
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Figure 3: Input parameters for a simple simulation of a process of reionization of the universe.
The initial condition is a Planckian spectrum. The integration starts at z ∼ 20.
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