*Issue: 1.0 Date: 18/08/2005 page: 1/29* 

# CZT Bo/Pa Set-up for the hybrid experiment at the Leicester University

# Internal Report IASF/BO n. 425/2005

## Authors:

- T. Abbey<sup>(c)</sup>
- N. Auricchio<sup>(a)</sup>
- R. Ambrosi<sup>(c)</sup>
- E. Caroli<sup>(a)</sup>
- S. Del Sordo<sup>(b)</sup>
- A. Donati<sup>(a)</sup>
- D. Ross<sup>(c)</sup>
- F. Schiavone<sup>(a)</sup>
- G. Ventura<sup>(a)</sup>

Affiliation: (a) IASF-INAF–Bologna (b) IASF-INAF–Palermo (c) University of Leicester/Space Research Centre

*Issue: 1.0 Date: 18/08/2005 page: 2/29* 

#### Aims

This document intends to provide the user with the technical informations to reliably arrange and manage the set-up of the CCD detector (Leicester) and the CZT detector (Bologna-Palermo). **The documentation mainly refers to the CZT detector equipments.** 

# **1. Documents Applicable**

| CZT      | Characterization of a CZT Focal Plane Small Prototype for                                 |                |  |
|----------|-------------------------------------------------------------------------------------------|----------------|--|
|          | Hard X-Ray Telescope                                                                      | IEEE 2004      |  |
| CCD      | Developments in MOS CCDs for X-ray astronomy                                              | NIM A 436 1999 |  |
|          | Spectral re-distribution and surface loss effects in Swift XRT (XMM-Newton EPIC) MOS CCDs | NIM A 484 2002 |  |
| ASIC     | Low power BiCMOS ASIC for wide energy range X-gamma ray                                   |                |  |
|          | imaging and spectroscopic detectors                                                       | NIM 2004       |  |
| Read-Out | Simulatore hardware e elettronica di back up                                              | PLX-IASF-001   |  |
| SW       | Quick-look SW manual                                                                      | PLX-IASF-003   |  |

page: 3/29

## 2. Summary

The scientific objectives of next high throughput mission in X-ray astronomy require new type of focussing telescopes able to extend the observational range at least up to 100 keV to solve crucial question concerning the nature of the high energy emission from cosmic source and the origin of the cosmic X-ray background. A challenging technology to extend the classical grazing incidence range to higher energy is today offered by the development of multilayer optics that are effective as X-ray concentrators between few keV up to 80/100 keV. A useful arrangement for this type of mission concept (e.g. HEXIT, SIMBOL-X) can foresee the soft (e.g. 0.1-10 keV) X-ray optics nested and coaxial with the hard-X mirrors. This means that the focal plane of the telescope shall operate on the overall energy range (from 0.1 to 80/100 keV) fulfilling at the best the different requirements of the two optics type in terms of detection efficiency, spatial resolution and spectroscopic performance. A solution for this kind of focal plane detector is given by an hybrid design with a soft X ray detector (e.g. CCD) in front and coaxial to an hard-X ray detector (e.g. Pixel CZT spectrometer).

In this contest our collaboration (Space Research Centre of the Leicester University and INAF/IASF-Bologna/Palermo) had the idea to assemble a hybrid detector prototype using as soft X-ray detector a spare CMOS CDD of the EPIC/XMM developed at Leicester University instrument and a CZT small pixel detector, available at IASF/INAF, with custom ASIC's (developed in collaboration with Politecnico of Milano) as analogic front-end electronics. The main characteristics of the two detectors are shown in Table 1.

This report is divided in two main parts: the first contain documentations about the electronics, designs, cabling schemes and electrical interfaces for the CZT pixel detector and is intended as a reference manual for the experimental set-up of the hard X-ray detector at Leicester University, the second is mainly a log-book of the first phase activities yield at the same place during the week (25-29 July 2005) devoted to the hybrid detector set-up and functional test.

| Detector   | Туре                 | Operative   | Spatial    | Energy Resolution                     | Efficiecy     |
|------------|----------------------|-------------|------------|---------------------------------------|---------------|
|            |                      | Range       | resolution |                                       |               |
| CZT        | Pixellated<br>CdZnTe | 10-100 keV  | 500 μm     | $\sim 5\%$ @ 60 keV <sup>241</sup> Am | ~90% @ 60keV  |
| EPIC CCD22 | MOS CCD              | 0.2 -10 keV | 40 µm      | ~ 3% @ 3 keV                          | ~ 80% @ 3 keV |
|            |                      |             |            | ~ 2% @ 10 keV                         | ~ 25% @10 keV |

Table 1. The main characteristics of the two detectors used for the Hybrid prototype.

*Issue: 1.0 Date: 18/08/2005 page: 4/29* 

## 3. The CZT ASIC

Annex 1

# Low power BiCMOS ASIC for wide energy range X-gamma ray imaging and spectroscopic detectors

Giuseppe Bertuccio,<sup>a\*</sup> Stefano Caccia,<sup>a</sup> Ezio Caroli,<sup>b</sup> Stefano Castorina,<sup>a,1</sup>

Andrea Corradi,<sup>a,1</sup> Gianluca D'Alesio<sup>a,1</sup>, Pietro Gallina,<sup>a,1</sup> Marco Sampietro<sup>a</sup>

<sup>a</sup>Department of Electronics Engineering and Information Science, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy

<sup>b</sup>IASF – Sezione di Bologna/CNR, Via Gobetti 101, 40129 Bologna, Italy

Elsevier use only: Received date here; revised date here; accepted date here

#### Abstract

A low-power, low noise Application Specific Integrated Circuit (ASIC), designed to read out CdTe array detectors for X- $\gamma$  ray imaging and spectroscopy on satellite or balloon telescopes, is presented. The chip ELBA has been realized in 0.8  $\mu$ m BiCMOS technology; the front-end includes preamplifier, shaper, peak stretcher, discriminator with a dynamic range from 20 keV to 2 MeV of photon energy. The reset of the preamplifier and the high time constant of the shaper are obtained with a very compact current conveyor feedback. A multichannel prototype has been realised with a digital back-end including multiplexer, decoder, double pulse detect and logic circuitry for chip testing and calibration. The measured noise level is about 500 electrons r.m.s. corresponding to 5 keV FWHM in CdTe detectors. The total non-linearity is below  $\pm 1.5$ % and the crosstalk between two neighboring channels is about 0.7%. The circuit is powered with a single supply at +4V with a total power consumption of 1 mW/channel. © 2003 Elsevier Science. All rights reserved.

#### 1. Introduction

The study of X and gamma ray source in space is continuously in progress and requires the development of position sensitive spectroscopic grade detectors (PSD). Cadmium telluride (CdTe) and Cadmium Zinc Telluride (Cd<sub>1-x</sub>Zn<sub>x</sub>Te) have been considered being excellent semiconductors to cope the wide dynamic range from few keV up to some MeV of photon energy [1]. The proposed PSD's are pixel-type with several thousand of channels, so that low-power ASIC's are required for the read out electronics. The low-power and the spectroscopic grade requirements, in terms of noise, linearity, cross-talk immunity, are somewhat in conflict and demand for challenging circuit design. In this work we present the ASIC ELBA specifically designed to be low-power, low-noise and with a wide dynamic range in order to be employed to read out the CdTe array detectors of the CIPHER telescope [2]. The chip has been implemented in 0.8  $\mu$ m BiCMOS technology of Austria Micro Systems (AMS).

#### 2. ELBA ASIC specification

The required specifications of ELBA ASIC are: a low power consumption (<3mW/channel), a wide dynamic range (20 keV-2 MeV), linearity error <2%, shaping time 1 µs, noise:  $\le5$  keV FWHM in CdTe detectors, corresponding to 500 electrons r.m.s.. The front-end has to be optimised for 1 pF detector capacitance and must be able to handle detector current up to 100 nA. A version of the chip with a restricted input energy range (10 keV-100 keV) and with a noise below 2 keV FWHM will use the same architecture of the presented ASIC.

The chip design has been particularly influenced by the low power requirement, which forced to find solutions for the simplest circuit topologies assuring at the same time spectroscopic grade performance, also in terms of high thermal stability of the transfer functions.

|           |                         | Ref:CZT-IASF-001                             |
|-----------|-------------------------|----------------------------------------------|
| IASF/INAF | CCD Leicester_CZT Bo/Pa | Issue: 1.0<br>Date: 18/08/2005<br>page: 5/29 |

An 8 channels prototype chip has been designed and produced in  $0.8 \,\mu m$  BiCMOS technology of Austria Micro Systems (AMS). The chip include also a digital back-end described in section 4.

#### 3. The analog section

#### 3.1. The charge preamplifier

The analog part of ELBA is constituted by a charge sensitive preamplifier, a second-order semigaussian shaper, a peak stretcher and a discriminator. The design has been done for a single power supply of 4 V. The charge preamplifier employ a p-MOSFET as input transistor and bipolar transistors for having maximum transconductance at the minimum bias current. The discharge of the feedback capacitance is continuous and implemented with a current-conveyor as schematically shown in Fig. 1 [3]. Using this technique it was possible to implement an equivalent feedback resistance of 170 M $\Omega$  as far as the noise is concerned and, at the same time, to realize the first shaping time constant within the preamplifier itself. The current source  $I_{bias}=20$  nA is necessary to bias the current mirror and determines the noise level of the front-end (500 electrons r.m.s.). Operation at lower  $I_{bias}$  values implies a noise reduction (Fig.1) but an increase of the circuit non-linearity due to the large signal operation of the current mirror. The power consumption is 220  $\mu$ W.

#### 3.2. Shaper amplifier, peak stretcher, discriminator

The shaper implements a current-mode approach and consists of a high pass filter stage feeding two 'R-lens' filter cells [4]. The peaking time is set at 1.5  $\mu$ s. The power consumption is 300  $\mu$ W. The peak stretcher has a power consumption of 55  $\mu$ W and a good linearity (error ±0.2 %) has been measured. Figure 2 shows the linearity of the whole front-end in the range 20 keV-2 MeV of photon energy, as measured by simulating a CdTe detector.

The discriminator operates in current-mode and its threshold can be externally adjusted. Its power consumption is  $360 \,\mu\text{W}$ . Figure 4 shows the response of the front-end (shaper and discriminator output signals) to input signals ranging from 28 keV up to 2 MeV. The gain uniformity in the 8-channels prototype has been measured: the standard deviation being 1.8 %. The cross-talk between two neighboring channels has been measured to be about 0.7 %.



Figure 1. Equivalent Noise Charge of the front-end as function of the bias of the current mirror used to implement the continuous reset of the preamplifier.

Figure 2. Measured linearity error of the front-end.





*Issue: 1.0 Date: 18/08/2005 page: 6/29* 

#### 4. The digital section

The back end digital circuits of ELBA is constituted by an analog multiplexer driven by the discriminators of each channel. Due to the predicted low photon rate (<100 cps) simultaneous events are extremely rare, anyway accidental pile-up is detected by a double pulse logic internal circuit. An integrated encoder delivers the binary code of the triggered channel. The chip implements also a decoder and a control-logic to allow the test of each channel and the calibration of the array.

#### Acknowledgments

This research has been supported by the Italian Space Agency (ASI). We would like to thank S. Masci for chip packaging and bonding.

#### References

- R.B. James, T.E. Schlesinger, "Semiconductors for Room Temperature Nuclear Detector Applications", Semiconductors and Semimetals, Vol 43, Academic Press, (1995).
- [2] E.Caroli, J.B.Stephen, W.Dusi, G.Bertuccio M.Sampietro, "CIPHER: Coded Imager and Polarimeter for High Energy Radiation", Nucl. Inst. Meth. A448, 2000, pp. 525-530.
- [3] M. Sampietro, G. Bertuccio, "Zero Power Current Conveyor for DC Stabilisation and System Reset of Fast Current Pulse Amplifiers", Electronics Letters, Vol.34, No.19, 1998, p.1801-1802.
- [4] G. Bertuccio, P. Gallina, M. Sampietro, "R-Lens Filter: An (RC)<sup>n</sup> Current-Mode Lowpass Filter", Electronics Letters, vol.35, no. 15, 1999, pp. 1209-1210.

#### <u>Note</u>

Two versions of the ASIC-ELBA have been developed.

The first one (described in the paper), including both analog and digital sections, had a dynamic range of 20-2000 keV. The operating principle is described in § 3.1 of the paper, which also explains the possibility of noise reduction by using the current mirror bias in the first amplifier stage. Output signals are delivered to the external world through an analog multiplexer.

The second one (especially developed for the energy range 10-100 keV) differs from the 1st one for the following features:

- only analog section (preAplifier and shaping amplifier), no digital one;
- no discriminator;
- no peak pulse stretcher;
- two eight channel amplification chains have been constructed on the same chip (max 16 channels).

The 1st and 2nd versions are completely equal with respect to the pure analog section (preAmp and shaping Amp); they differ only for the conversion gain. In the 2nd version the digital section was not implemented (no peak stretcher, no discriminator, no output MUX), while two groups of 8 channel were constructed.

Since the output voltage range is 0-1.4 Volt, the 2nd version should have a conversion factor of about 1.3-1.5 mV/keV which, at 60 keV Am241, should give a voltage output of about 0.8-0.85 Volt.

The first stage preAmp is a "reset" type charge sensitive preamplifier; this configuration is particularly used in conjunction with multi-element detector arrays in which the monocatode is biased at a negative HV while any anode (having a bias quite near to 0 V) is directly connected to an ASIC input channel.

The CZT used should give for any anode an equivalent capacitance of 1-1.5 pF: this value could be used to simulate any anode.

IASF-Bologna was responsible of the design and construction of the PCB. Any PCB includes:

- a modified ASIC-ELBA for the range 10-100 keV;
- a low-dropout/low-noise regulator LT1763CS83 (+4V out for the ASIC Bias)
- a low-dropout/low-noise regulator LT1763CS8-5 (+5V out for the output stages of the ASIC, i.e. for the output voltage followers)
- an OP-AMP OP-27 for the generation of the bias current of the first stage
- an Instrumentation Amp AD620 for the monitor of the bias current



## <u>Annex 2</u> 8-Ch ASIC PCB: block diagram of the second version.

*Issue: 1.0 Date: 18/08/2005 page: 8/29* 





*Issue: 1.0 Date: 18/08/2005 page: 9/29* 

## <u>Annex 4</u> ASIC PCB view with the components set in evidence.



|           |                         | Ref:CZT-IASF-001                              |
|-----------|-------------------------|-----------------------------------------------|
| IASF/INAF | CCD Leicester_CZT Bo/Pa | Issue: 1.0<br>Date: 18/08/2005<br>page: 10/29 |
|           |                         |                                               |

# 4. CZT Detector

The CZT detector from eV-Products (in charge of IASF-Pa) consists of an array of 256 independent pixels obtained by a segmented platinum anode deposited on a CZT single crystal. The 256 pixels array is surrounded by a guard ring, which was extended to the edge of the crystal. The guard ring is made sufficiently wide to protect peripheral pixels against surface leakage current and to reduce the influence of the edge effects. The cathode is a planar platinum electrode covering the entire detector surface. Two detectors are available, differing on thickness (1 and 2 mm); both of them have lateral dimensions of  $10x10 \text{ mm}^2$ . The CZT crystal together with the flip chip carrier board is shown in the figure of the Annex 5.

#### <u>Annex 5</u> **Photograph of the CZT matrix; the upper surface is the monocatode.**



 Table 2:
 Detectors characteristic.

The wire connecting the cathode electrode to the bias voltage pin is clearly visible (on the right in high top corner).

Both the electrical interface and the ceramic support (vetronite PCB) are covered by a protection coating. The PCB support provides the electrical connections to the external world. The main characteristics of detectors used in this project are summarized in Table 2.

<u>Annex 6</u> Schematic view of the anodes' surface for the eV 16x16 pixel CZT detector (anodes' view as it would be seen looking at the vetronite support, i.e. looking at the catode side as in Annex 5). **Pixel numbering sequence is also shown.** 

| 1      | 2         | 3  | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  |
|--------|-----------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 17 1   | 8 1       | 9  | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  |
| 33 3   | 4 3       | 35 | 36  | 37  | 38  | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  |
| 49 5   | 0         | 51 | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64  |
| 65 6   | 6 6       | 17 | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| 81 8   | 2 8       | 33 | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  |
| 97 9   | 8         | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 |
| 113 11 | 4         | 15 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 |
| 129 13 | 30 1:     | 31 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 |
| 145 14 | <b>16</b> | 47 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
| 161 16 | 52 10     | 63 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 |
| 177 17 | 8 1       | 79 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 |
| 193 19 | 94 19     | 95 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 |
| 209 21 | 10 2      | 11 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 |
| 225 22 | 26 2      | 27 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 |
| 241 24 | 12 24     | 43 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 |

# 5. ASIC PCBs' distribution

The 14 ASIC PCBs' distribution permits to cover the square detector sub-array shown in the Annex 8, i.e. CZT detector pixels ranging from pix # 65 to pix # 184 distributed in rows of 8 elements by 8 columns.

| Annex / Bottom view of the electrical output pad with the 14 ASIC PC |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|



Ref:CZT-IASF-001

*Issue: 1.0 Date: 18/08/2005 page: 13/29* 

| 1                | 2               | 3                | 4                | 5   | 6                | 7   | 8                | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  |
|------------------|-----------------|------------------|------------------|-----|------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| 17               | 18              | 19               | 20               | 21  | 22               | 23  | 24               | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  |
| 33               | 34              | 35               | 36               | 37  | 38               | 39  | 40               | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  |
| 49               | 50              | 51               | 52               | 53  | 54               | 55  | 56               | 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64  |
| 65               | 66              | 67               | 68               | 69  | 70               | 71  | 72               | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| 81               | 82              | 83               | 84               | 85  | 86               | 87  | 88               | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  |
| 97               | <mark>98</mark> | 99               | <mark>100</mark> | 101 | 102              | 103 | 104              | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 |
| 113              | 114             | 115              | 116              | 117 | 118              | 119 | 120              | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 |
| <mark>129</mark> | 130             | 131              | 132              | 133 | 134              | 135 | 136              | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 |
| <mark>145</mark> | 146             | <mark>147</mark> | 148              | 149 | 150              | 151 | <mark>152</mark> | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
| 161              | 162             | 163              | 164              | 165 | <mark>166</mark> | 167 | 168              | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 |
| 177              | 178             | 179              | 180              | 181 | 182              | 183 | <mark>184</mark> | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 |
| 193              | 194             | 195              | 196              | 197 | 198              | 199 | 200              | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 |
| 209              | 210             | 211              | 212              | 213 | 214              | 215 | 216              | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 |
| <mark>225</mark> | 226             | 227              | 228              | 229 | <mark>230</mark> | 231 | 232              | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 |
| <mark>241</mark> | 242             | 243              | 244              | 245 | 246              | 247 | 248              | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 |

# Annex 8 CZT's Anodes Coverage by using 14 ASIC PCPs'.

# 256 pixel CZT detector coverage with 14 ASIC PCBs'





## <u>Annex 9</u> Top view of the electrical output pad together with the 14 ASIC PCBs'.

CZT detector array distribution (factory output pad): the position of the corresponding CZT pixel is found by comparison with Annex 8.

*Issue: 1.0 Date: 18/08/2005 page: 15/29* 

# <u>Annex 10</u> Correspondence between the CZT pixels and the used inputs of the ASIC PCBs'.

| ASIC | : N. | $\bigcirc$ |
|------|------|------------|------------|------------|------------|------------|------------|------------|------------|
|      |      | 1          | 2          | 3          | 4          | 5          | 6          | 7          | 8          |
|      | 7    | 179        | 164        | 148        | 133        | 118        | 115        | 120        | 65         |
|      | 8    | 147        | 145        | 129        | 113        | 97         | 100        | 84         | 67         |
|      | 9    | 130        | 114        | 98         | 99         | 83         | 101        | 68         | 85         |
|      | 6    | 194        | 178        | 161        | 134        | 132        | 116        | 81         | 66         |
|      | 5    | 165        | 162        | 135        | 119        | 117        | 82         | 102        | 86         |
|      | 14   |            |            |            | 177        | 150        | 149        | 146        | 131        |
|      | 13   |            |            |            |            | 195        | 193        | 180        | 163        |
|      | 10   | 152        | 184        | 230        | 167        | 166        | 241        | 225        | 151        |
|      | 11   | 168        | 216        | 136        | 245        | 244        | 243        | 242        | 181        |
|      | 12   | 233        | 232        | 231        | 215        | 214        | 183        | 197        | 182        |
|      | 1    | 70         | 22         | 104        | 105        | 73         | 27         | 90         | 91         |
|      | 2    | 88         | 72         | 8          | 24         |            |            |            |            |
|      | 4    | 55         | 54         | 37         | 103        | 19         | 69         | 18         |            |
|      | 3    | 40         | 23         | 71         | 87         | 5          |            |            |            |

Table 3. Table giving the correspondence of the CZT pixels with the relative inputs of the used ASIC PCB.

*Issue: 1.0 Date: 18/08/2005 page: 16/29* 

#### <u>Annex 11</u> ASIC PCB: Component side view.



*Issue: 1.0 Date: 18/08/2005 page: 17/29* 

#### <u>Annex 12</u> Experimental set up.



Experimental set up showing the interconnections between the ASIC PCB's and the output 9 pin connections (1A-1B, 2A-2B, 3A-3B, 4A-4B/Table 4-7).

Issue: 1.0 Date: 18/08/2005 page: 18/29

#### Annex 13 Interconnections ASIC PCB's /outputs D-type connector.

#### **READ-OUT ELECTRONIC BOARD**

Showing physical interconnections between the ASIC PCB's outputs and the 1A-1B/4A-4B connections.



| 1-A | Takes | ASIC | ASIC  | PIXEL  |    |
|-----|-------|------|-------|--------|----|
| pin | pin   | #    | Ch In | Ch Out | #  |
| 1   | 1     | 7    | 8     | 9      | 65 |
| 2   | 2     | 6    | 8     | 9      | 66 |
| 3   | 3     | 8    | 8     | 9      | 67 |
| 4   | 4     | 9    | 7     | 8      | 68 |
| 5   | 5     | 4    | 6     | 7      | 69 |
| 6   | 6     | 1    | 1     | 2      | 70 |
| 7   | 7     | 3    | 3     | 4      | 71 |
| 8   | 8     | 2    | 2     | 3      | 72 |
| 9   | GND   |      |       |        |    |

ASIC ASIC PCB 1-B Takes PIXEL pin # Ch in Ch out # pin GND

Table 4a/b. Board Number 1.

| 2-A | Takes | ASIC | ASIC  | PIXEL  |     |
|-----|-------|------|-------|--------|-----|
| pin | pin   | #    | Ch In | Ch Out | #   |
| 1   | 17    | 8    | 5     | 6      | 97  |
| 2   | 18    | 9    | 3     | 4      | 98  |
| 3   | 19    | 9    | 4     | 5      | 99  |
| 4   | 20    | 8    | 6     | 7      | 100 |
| 5   | 21    | 9    | 6     | 7      | 101 |
| 6   | 22    | 5    | 7     | 8      | 102 |
| 7   | 23    | 4    | 4     | 5      | 103 |
| 8   | 24    | 1    | 3     | 4      | 104 |
| 9   | GND   |      |       |        |     |

9 GND

Table 5a/b. Board Number 2.

| 3-A | Takes | ASIC | ASIC  | PIXEL  |     |
|-----|-------|------|-------|--------|-----|
| pin | pin   | #    | Ch In | Ch Out | #   |
| 1   | 33    | 8    | 3     | 4      | 129 |
| 2   | 34    | 9    | 1     | 2      | 130 |
| 3   | 35    | 14   | 8     | 9      | 131 |
| 4   | 36    | 6    | 5     | 6      | 132 |
| 5   | 37    | 7    | 4     | 5      | 133 |
| 6   | 38    | 6    | 4     | 5      | 134 |
| 7   | 39    | 5    | 3     | 4      | 135 |
| 8   | 40    | 11   | 3     | 4      | 136 |
| 0   |       |      |       |        |     |

9 GND Table 6a/b.Board Number 3.

ASIC 2-B Takes ASIC PCB PIXEL pin Ch Out pin # Ch In # GND 

| 3-B | Takes | ASIC | ASIC  | PIXEL  |     |
|-----|-------|------|-------|--------|-----|
| pin | pin   | #    | Ch In | Ch Out | #   |
| 1   | 41    | 8    | 2     | 3      | 145 |
| 2   | 42    | 14   | 7     | 8      | 146 |
| 3   | 43    | 8    | 1     | 2      | 147 |
| 4   | 44    | 7    | 3     | 4      | 148 |
| 5   | 45    | 14   | 6     | 7      | 149 |
| 6   | 46    | 14   | 5     | 6      | 150 |
| 7   | 47    | 10   | 8     | 9      | 151 |
| 8   | 48    | 10   | 1     | 2      | 152 |
| 9   | GND   |      |       |        |     |

Ref:CZT-IASF-001

Issue: 1.0 Date: 18/08/2005 page: 19/29

| <b>4-</b> A | Takes | ASIC | ASIC  | PCB    | PIXEL |
|-------------|-------|------|-------|--------|-------|
| pin         | pin   | #    | Ch In | Ch Out | #     |
| 1           | 49    | 6    | 3     | 4      | 161   |
| 2           | 50    | 5    | 2     | 3      | 162   |
| 3           | 51    | 3    | 8     | 9      | 163   |
| 4           | 52    | 7    | 2     | 3      | 164   |
| 5           | 53    | 5    | 1     | 2      | 165   |
| 6           | 54    | 10   | 5     | 6      | 166   |
| 7           | 55    | 10   | 4     | 5      | 167   |
| 8           | 56    | 11   | 1     | 2      | 168   |
| 9           | GND   |      |       |        |       |

| <b>4-B</b> | Takes | ASIC | AS    | IC     | PIXEL |
|------------|-------|------|-------|--------|-------|
|            |       | #    | Ch In | Ch Out | #     |
| 1          | 57    | 14   | 4     |        | 177   |
| 2          | 58    | 6    | 2     |        | 178   |
| 3          | 59    | 7    | 1     |        | 179   |
| 4          | 60    | 13   | 7     |        | 180   |
| 5          | 61    | 11   | 8     |        | 181   |
| 6          | 62    | 12   | 8     |        | 182   |
| 7          | 63    | 12   | 6     |        | 183   |
| 8          | 64    | 10   | 2     |        | 184   |
| 9          | GND   |      |       |        |       |

9 GND Table 7a/b. Board Number 4.

*Issue: 1.0 Date: 18/08/2005 page: 20/29* 

# 6. Read-Out and Data Handling Electronics (Takes)

As it can be seen from the experimental set-up (Annex 12), the shaped analog signals from the ASIC PCBs' are fed to an interface box through 8-9 pin connectors (1A-1B, 2A-2B, 3A-3B, 4A-4B) for a total amount of 64 CZT amplified channels. The I/F box, which provides an adjustement for any channel amplitude in order to fit with the input range of the analog section of the Read-Out electronics, is directly connected to Takes through 4-37 pin connectors.

Input analog signals to Takes are first processed by a coincidence-anticoincidence logic: if not more than two-three signals are present within the coincidence time (selectable between 2 and 20 usec) they are accepted for the analysis; if more than two-three events are coincident they are rejected. In practice, any signal exceeding the low energy threshold is pre-stretched but post stretching action is issued only if the coincidence-anticoincidence rule is fulfilled. Events selected as acceptable (one or two or three within the coincidence time) have to be analyzed both in amplitude (energy information) and in interaction position (imaging information). Since the position information is directly related to the input channel of the Read-Out electronics, i.e. to the correspondence between the number of the CZT pixel and the input channel number of Takes, a position address is associated to any activated channel. If the coincidence-anticoincidence criterion is met, the amplitude(s) of the signal(s) are converted in digital by 12-bit flash Analog-to-Digital Converters. Any 12-bit converted code giving the energy information is then associated with the position code giving the interaction information: digital data are inserted in a FIFO memory from which they are red-out in the form of 32-bit parallel words. A full 32-bit data is outputted for any event, i.e. one 32-bit data for single event, two 32-bit data for two events in coincidence, three 32bit data for three events in coincidence (multiple events).

| MSByte                                                    |                                 |                                 | LSByte                  |
|-----------------------------------------------------------|---------------------------------|---------------------------------|-------------------------|
| Byte P3                                                   | Byte P2                         | Byte P1                         | Byte P0                 |
| $2^{31} 2^{30} 2^{29} 2^{28} 2^{27} 2^{26} 2^{25} 2^{24}$ | 223 222 221 220 219 218 217 216 | 5 215 214 213 212 211 210 29 28 | 27 26 25 24 23 22 21 20 |
| unused bits—                                              |                                 | EL ID                           | – ENERGY –              |

Energy: Signal amplitude coded with 10 bit resolution (1024 energy channels).

**OF:** Overflow flag; when OF=1 indicates a signal exceeding the maximum energy.

**EF**: End of the event; EF=0 means a single pixel excitation, EF=1 multiple events.

**PIXEL ID**: Identifies the pixel address with 8-bit resolution (only six bits are used in the present experiment to address 64 pixels).

Takes electronics is schematically divided into the following subsystems:

- Analog input conditioning. Up to 8 boards can be used, each of which conditions 16 analog channels by shaping CR-RC amplifiers; each amplifier is followed by a peak stretcher driven by a low energy threshold. The stretching action is extended if coincidence rule is respected. An address is associated to any input in accordance to the HW wiring, i.e. any analog input has its own address corresponding to the input pin to which it is connected;
- **Coincidence-Anticoincidence Logic** which takes the decision of how many signals are to be considered as generated by the same primary event within the a selectable time (2-20 µsec);
- Any 16 peak stretcher group is fed to a **16-to-1 analog multiplexer** whose output is connected to the 12-bit flash ADC. 10 bit are used for the energy coding;

|           |                         | Ref:CZT-IASF-001                              |
|-----------|-------------------------|-----------------------------------------------|
| IASF/INAF | CCD Leicester_CZT Bo/Pa | Issue: 1.0<br>Date: 18/08/2005<br>page: 21/29 |

- **Data handling board** collecting energy and address data from the distributed analog boards and storing them in an 8k FIFO memory in order to derandomize data.
- **Output IF** which extracts data stored in the FIFO memory and presenting them for acquisition in parallel form (32-bit data words) also providing the HW acquisition commanding signal (flag) and handling the "data acknowledge" to synchronize the data acquisition subsystem.



Output IF electrical diagram.

*Issue: 1.0 Date: 18/08/2005 page: 22/29* 

The Output IF box is physically external to Takes electronics, being wired in an independent box. It is connected to Takes by means of four coaxial cables:

- Serial Data,
- **Clock** at 5 MHZ,
- **SH/L** shifting or loading data and
- **Busy** which prevents the system from saturation.



Block diagram digital acquisition.



NI 6533 digital card and Output IF box.

Data are acquired by the PC through a National Instrument NI DIO 6533 digital interface which is managed by a HW handshake and directly connected to the Takes Output IF.



The PC resident SW (document PLX-IASF-001) is able to manage the experiment and to output both energy and position data, as well data storage. It also set up the system initial calibrations (gain correction factors, zero and offset parameters), as well as the energy window levels.

| Carthe                                                                                     | PL X Quick-     | look        | . VA                  | SF Bologna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Energy Sp                                                                      | ectrum Pixel 1950                                                                                                                                                                                                         |                 | defet the ROL  | 100.201                                                                                              |
|--------------------------------------------------------------------------------------------|-----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|------------------------------------------------------------------------------------------------------|
| ror the                                                                                    | e axa czi pi    | el detettol | a dente               | Palermo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 204-                                                                           |                                                                                                                                                                                                                           |                 |                | Perik De                                                                                             |
|                                                                                            | ri Storage i    |             | wi 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 156-                                                                           |                                                                                                                                                                                                                           |                 |                | ROLLE                                                                                                |
| _                                                                                          | -               |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 146-                                                                           |                                                                                                                                                                                                                           |                 |                | 0                                                                                                    |
|                                                                                            | 12:17           | read        | Elapored<br>Tames (x) | START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _ 12k-                                                                         |                                                                                                                                                                                                                           |                 |                | centro                                                                                               |
|                                                                                            |                 | 1752064     | 468.203               | START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10k-                                                                           |                                                                                                                                                                                                                           |                 |                | 0                                                                                                    |
| 2005-07                                                                                    | -06 12:09:15    |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Bk-                                                                          |                                                                                                                                                                                                                           |                 |                | count                                                                                                |
| 2000-07                                                                                    | -0012:09:15     | 0 20 4      | 0 60 80 100           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64-                                                                            |                                                                                                                                                                                                                           |                 | Lo             | 0 0                                                                                                  |
|                                                                                            |                 |             |                       | STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24-                                                                            | 1015                                                                                                                                                                                                                      | ant accend      | $\sim$         | 0                                                                                                    |
|                                                                                            |                 |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-1                                                                            |                                                                                                                                                                                                                           |                 |                | Ame                                                                                                  |
| W Bellenne at                                                                              |                 |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | 100 200 300 400                                                                                                                                                                                                           | 0 500 600 700 B | 300 900 1023 🖬 | 10                                                                                                   |
|                                                                                            | tarting set the |             | and Storage Mer       | NJ (II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |                                                                                                                                                                                                                           |                 |                | 10                                                                                                   |
|                                                                                            | tarting set the | Acquisition | and Storage Mer       | NI 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |                                                                                                                                                                                                                           |                 |                | 10                                                                                                   |
| boel Map                                                                                   | tarting set the | Acquisition | and Storage Mer       | xu. III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                | Deal Michaeron                                                                                                                                                                                                            |                 |                | 10                                                                                                   |
| oel Map                                                                                    | tarting set the | Acquisition | and Storage Mer       | No. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                | Pixel Histogram                                                                                                                                                                                                           |                 |                | 1                                                                                                    |
| 0-<br>5-                                                                                   | tarting set the |             | ind Storage Mer       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n kierster für<br>Mit dieser spectra.                                          | Pixel Histogram<br>34 -<br>32 -                                                                                                                                                                                           |                 |                | 10<br>19-100 10<br>10041011                                                                          |
| 0+<br>5-<br>10-                                                                            | tarting set the |             | ind Storage Mer       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | Pixel Histogram<br>34:                                                                                                                                                                                                    |                 |                | 1+160 F                                                                                              |
| 0-<br>5-<br>10-<br>15-                                                                     | tarting set the |             | Ind Storage Mer       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n signage to                                                                   | Pixel Histogram<br>34k -<br>32k -<br>30k -<br>26k -<br>29k -                                                                                                                                                              |                 | MY             | 14 60 17<br>14 60 17<br>13742.1                                                                      |
| 0-<br>5-<br>10-<br>15-<br>20-                                                              |                 |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | Pixel Histogram<br>38<br>33<br>30<br>28<br>24                                                                                                                                                                             |                 | T              | 14 (22) P<br>3742.1<br>0.9136                                                                        |
| 0-<br>5-<br>10-<br>15-<br>20-<br>25-                                                       | tarting set the |             | Ind Storage Mer       | A Constant of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n nierweg te<br>nie donie igenetra.<br>State y<br>30                           | Pixel Histogram<br>38-<br>33-<br>30-<br>26-<br>26-<br>24-<br>24-<br>24-<br>23-                                                                                                                                            | m               |                | 1+ 152 12<br>3742.1<br>0.9136                                                                        |
| 0-<br>5-<br>10-<br>15-<br>20-<br>25-<br>30-                                                | tarting set the |             |                       | Place the grave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Hanner to<br>al draw spectra .<br>phent y<br>30                              | Pixel Histogram<br>38-<br>30-<br>29-<br>29-<br>24-<br>224-<br>224-<br>20-<br>20-<br>20-                                                                                                                                   |                 |                | 14 62 17<br>3742.1<br>0.9136                                                                         |
| 0-<br>5-<br>10-<br>15-<br>20-<br>25-<br>30-<br>35-                                         | tarting set the |             |                       | NI III<br>Privat ti aggios<br>para a<br>30<br>Counts<br>32802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Liance to<br>In Liance to<br>I dataset to<br>Density<br>30                   | Pixel Histogram<br>38 -<br>33 -<br>26 -<br>26 -<br>28 -<br>28 -<br>23 -<br>23 -<br>23 -<br>23 -<br>23 -<br>23 -<br>23 -<br>23                                                                                             |                 |                | 1 100 10<br>3742.1<br>0.9136                                                                         |
| 0-<br>5-<br>10-<br>15-<br>20-<br>25-<br>30-<br>35-<br>40-                                  |                 |             |                       | Na III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Lance to<br>In Lance to<br>I draw spectra.                                   | Pixel Histogram<br>34<br>33<br>30<br>30<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                         |                 |                | 1+ 120 P<br>1972 11<br>3742.1<br>0.9136<br>1950<br>1950<br>1950                                      |
| 0-<br>5-<br>10-<br>15-<br>20-<br>25-<br>30-<br>25-<br>30-<br>35-<br>40-<br>45-             |                 |             |                       | NA III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n signed for<br>all draw operators<br>all draw operators<br>all draw operators | Peel Histogram<br>38-<br>33 -<br>28 -<br>28 -<br>28 -<br>28 -<br>28 -<br>28 -<br>18 -<br>18 -<br>18 -<br>18 -<br>18 -<br>18 -<br>18 -<br>1                                                                                |                 |                | 1+ 122 P<br>1076 CT4<br>3742.1<br>0.9136<br>0.9136<br>0.9136<br>0.9136<br>0.9136<br>0.9136<br>0.9136 |
| Nort Map                                                                                   |                 |             |                       | 11 III<br>11 III<br>12 IIII<br>12 III<br>12 IIII<br>12 IIIII<br>12 IIIII<br>12 IIII<br>12 IIII<br>12 IIII<br>12 IIIII<br>12 IIII<br>12 IIIII<br>12 IIIIII<br>12 IIIII<br>12 IIIIII<br>12 IIIIII<br>12 IIIIIIIIIIII<br>12 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | n lanar ta<br>ul draw querta .<br>30                                           | Peer Histogram<br>38.<br>33.<br>35.<br>36.<br>28.<br>28.<br>28.<br>28.<br>28.<br>28.<br>28.<br>29.<br>29.<br>29.<br>29.<br>29.<br>29.<br>29.<br>29.<br>29.<br>29                                                          |                 |                | + 100 m<br>3742.1<br>0.9136<br>1950<br>70.101                                                        |
| Nort Map<br>0<br>5<br>10<br>15<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |                 |             |                       | 32802<br>-33<br>-23<br>-23<br>-23<br>-23<br>-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Jane M<br>al Jane Spectra                                                    | Peerl Histogram<br>38.<br>33.<br>33.<br>33.<br>24.<br>24.<br>24.<br>25.<br>24.<br>25.<br>25.<br>26.<br>26.<br>26.<br>27.<br>26.<br>27.<br>26.<br>27.<br>28.<br>28.<br>28.<br>28.<br>28.<br>28.<br>28.<br>28.<br>28.<br>28 |                 |                | 1950<br>1950<br>1950<br>1950<br>1950                                                                 |
| Neel Map                                                                                   |                 |             |                       | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt langue for<br>al dataset for<br>al dataset for<br>source y<br>30            | Peel Histogram<br>36<br>33<br>30<br>30<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                      |                 |                | 1+121 f<br>3742.1<br>0.9136<br>1950<br>70.101                                                        |

CZT SW Acquisition

*Issue: 1.0 Date: 18/08/2005 page: 24/29* 

Input data to the NI 6533 digital card is performed by means of a clamping 50 pin HW adaptor which, in turn, connects to the NI acquisition system through a 68 pin factory wired connector. The pin function of the 50 pin (JB) input adaptor is shown.



68/50 Adaptor JB connector.

#### Port Combinations and bit Data.

DIOA0(LSB)-DIOA7(MSB): data byte P0 DIOB0(LSB)-DIOB7(MSB): data byte P1 DIOC0(LSB)-DIOC7(MSB): data byte P2 DIOD0(LSB)-DIOD7(MSB): data byte P3

| Transfer | Possible Port                  | Timing Controllers |
|----------|--------------------------------|--------------------|
| Width    | Combinations                   | That Can Be Used   |
| 32 bits  | Port 0, Port 1, Port 2, Port 3 | Group 1            |

Table 8. Port Combinations NI DAQ board.

*Issue: 1.0 Date: 18/08/2005 page: 25/29* 

# 7. Leicester logbook 25-29 July

The IASF Bologna and Palermo groups in Italy together with the University of Leicester, Space Research Centre, have initiated a collaborative instrument development programme to build a hybrid position sensitive detector consisting of a Cadmium Zinc Telluride (16x16 pixel array) and a thinned EPIC CCD22. This detector would be sensitive over the 0.2 to 100 keV energy range. The aim of the collaboration is to produce a breadboard model that could be exploited in a future X-ray astronomy mission opportunity. The development of this breadboard model would place this team in an advantageous position to bid for financial support.

The readout electronics for the CZT detector include an ASIC based system developed by the Politecnico di Milano, Italy in collaboration with LABEN, Italy.

A collaborative experimental programme has been defined to, integrate the two detectors in a specifically designed facility at the University of Leicester and carry out a series of live X-ray tests over the sensitive range of the detector. Technical challenges to resolve include: a reduction of the system noise and testing of all the ASICS designed for the CZT detector.



#### CCD Leicester\_CZT Bo/Pa

#### Ref:CZT-IASF-001

*Issue: 1.0 Date: 18/08/2005 page: 26/29* 

The detector is supported on the vacuum flange by four aluminium posts.

Flange external view with the 4 vacuum tight connectors and cables to the Takes Electronics.





Overall view of the vacuum chamber containing both the CCD (rear) and the CZT pixel detectors. In the picture both the vacuum pump and the CCD cooling system with liquid N (top) dewar are visible. CCD Leicester\_CZT Bo/Pa

Ref:CZT-IASF-001

*Issue: 1.0 Date: 18/08/2005 page: 27/29* 

The detector chamber covered with lead foil during testing with an <sup>241</sup>Am source.

At the rear the CZT x-y translation stage is visible.

This facilitates the alignment of the CCD with the CZT detector.





Test of the signal outputs directly from the ASIC board.



64 channel Takes Electronics with the interface box connected to the ASIC output and the four coaxial cables with the output data on protocol signals.

#### IASF/INAF

CCD Leicester\_CZT Bo/Pa

#### Ref:CZT-IASF-001

*Issue: 1.0 Date: 18/08/2005 page: 28/29* 



## INDEX

Aims

- 1 Documents Applicable
- 2 Summary
- 3 The CZT ASIC
  - Annex 1 ELBA Paper.
  - Annex 2 ASIC PCB block diagram of the second version.
  - Annex 3 ASIC PCB electrical diagram.
  - Annex 4 ASIC PCB view with the components set in evidence.
- 4 CZT Detector
  - Annex 5 Photograph of the CZT matrix.
  - Annex 6 Pixel numbering.
- 5 ASIC PCBs' distribution
  - Annex 7 Bottom view of the CZT electrical output pad.
  - Annex 8 CZT's Anodes Coverage CZT with 14 ASIC PCPs'.
  - Annex 9 Top view of the CZT electrical output pad.
  - Annex 10 Correspondence between the CZT pixels and the used inputs of the ASIC PCBs'.
  - Annex 11 ASIC PCB: component side view.
  - Annex 12 Experimental set up.
  - Annex 13 Interconnections ASIC PCB's /outputs D-type connector.
- 6 Read-Out and Data Handling Electronics
- 7 Leicester logbook 25-29 July