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Our starting poeint to reconstruct the spatial dis ufgssf% of the ZLE, is the model of
Kelsall et al. (1998) for the ZLE based on the COBE data (hereafter indicated as COBE-
model) has many similarities with the IRAS model by Wheelock et al. i 1894). It describes
in details the emis v of the IDPs cloud, assumed to extend up to = 5.2 AU far from the
Sun, for wavelengths up to ab 300 pm. According to the COBE-model four components
contribute to the ZLE the dominating Smooth component, the Farth orbit locked ring of dust
vlar ring), the 1 ?2‘2«563?%}‘ blob, and three Bands of dust.
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2 The model and the numerical code

e Hux caleulated for a given frequency band is

(P, Rg,Rp).
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According to Eq. (1) of Maris et al. (2005), the spatial distribution of flux Z (P, Rg, Rp)
is

PoC
Zio(P,Rg,Rp) = f! ne(v(s))Be(T(x(s))) K (v) ds, (3)
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3 Series Expansion of the ZLE Spatial Dependence
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Associated Rings Kernel Ring

Figure 2: Patching scheme for scan circles drawn along the equator, of radius 3 and patches
of radius r. The figure shows the kernel circle of choice (red-thick), another kernel circle
(black, dashed) and the region of scan circles associated to the kernel (grey, dashed area).
A circular patch at the crossing between the equator (black, full line) and the kernel is also
displayed (circle with red border and blue hatching), as the upper and lower limit of the
exclusion bands (grey, full lines).

5 Scanning Strategy and Setup of Sky Patches

In Maris et al. (2005) circular patches in the sky at the crossing of two PLANCK scans of
the sky are composed, but the algorithm to construct such patches and the list of patches is
not reported. [n particular requirements for the construction of patches are:

1. cach patch shall be made of samples of sky observerd in the first and in the second
survey. samples unobserved in one of the two surveys shall be discarded;

2. each patch shall be composed of an identical number of samples belogin to each survey:

3. noise in scan circles shall be statistically independent (avoid sharing of samples hetween
patches);

4. samnples of each survey within a given patch shall be selected assessing maximal differ-
ences in satellite positions during their observation.

The last requiremet is the hardest to accomodate since sean circles has the tendency to

pile-up near the ccliptical poles (Dupac & Tauber 2005). Many and many days of observation

may contribute to the same patch near the pole smearing out the differential effects we want

to measure with PLANCK.
Patches are build-up on the definition of scan circles within a survey.

5.1 Definition of the Patching Scheme
A scan cirele is defined by

Lot angudar radius L F



Kernel 1 Kernel 2 Kernel 3

Figure 3: Exaimnple of patching for three consecutive kernel scan circles. Colors follows Fig. 2.
Thin black lines are the scan circles associated to Kernel 1 with times defined by Eq. (26).
All the kernels have patches at the crossing with the equator, while the other patches are
simmetrically distributed about it up to the begin of the exclusion bands.

2. the axis passing through its center C in the sky;

3. the epoch of acquisition ¢.
The scanning strategy defines

1. the value of 3 assumed for all the circles;

2. the list of consecutive epochs t at which each circle has been acquired;

3. the list of centers C; for each epocly;

4. the list of positions of the satellite within the Solar System for each epoch.
Patches are defined by

. the patch radius r;

2. the patch center;

3. the epoch intervall in which the samples in the patch have been acquired.
In addition, in the remaining part of this discussion we assumed that

1. during the acquisition of a scan circle {for PLANCK 1 hour) the satellite does not change
appreeciably its position within the Solar System:

2. PLANCK scans the skyv according to the Nominal scanning strategy © (Dupac & Tauber
2005). where it is assumed that PLANCK is stepping the sky acquiring scan circles

with centers on the ccliptical equatonr;

YThe procedure mav be generalized {or other scanning strategies,

it



Figure 4: Grey spots are circular patches of 2° radius, drawn along a scan circle acquired
within a single survey. Spots are overlapped to a map of Galaxy at 857GHz.

at constant time intervals At,
at constant discrete angular intervalls A,
with zero dead times between the end of a scan circle and the begin of the next
one.
Fig. 2 and Fig. 3 details the explanation of the following two-steps patching algorithm, for

patches of fixed width r. Examples of patching of a sky map in HEALPix are shown in F ig. 4
and Fig. 5.

Step A The list of time-ordered scan circles in each survey is partitioned according to the
following procedure

L. select a set kernel scan circles in the survey
kernel scan circles shall have they centers at distances greater than 2r,
kernel scan circles shall be time-ordered and consecutive in time;

2. for each kernel scan circle define the set of associated scan circles in the survey
associated scan circles shall be neighbour in time to their kernel scan ecircle,
centers of associated scan circles shall depart from the center of the kernel no

more than 7.

Step B Patches are drawn

L. in the regions defined by the scan circles belonging to each partition class;

3]

to avoid pile-up effects patches are not drawn over regions where scan circles he-
longing to different classess overposes or cross (definining excluson regions toward
the poles);

3. patches are drawn at distances equal or greater than 2r along the kernel scan

circle;

k. patches are distributed symmetrically about the equator within the linifs imposed
by the exclusion bands, the frst patcli is located af the crossing point between thie
crpuator and the kernel.



srrirla

i avoids

g. g{’ o
’}§ ?\31%

&f&i «;n!% *hﬁﬂ Ker

and Kernel 2

3

t section, wh

latitude) compute the scan circles

e following hypothesis
angular radius 0° < 8 < 90°;

o1 the spherical equat

3.2.2 The Solution

The circle crossi

ber Aee, Oec.

ng is

The problem
The
on ? a

sian coordinate
ent to assume A = () the

1 30
i s 25
g J

where o




i85 0. 01) Galactic (296 % 78 8) Calactic

Figure 5: Details from Fig. 4, frames are centered on circles with phase angles of 0° (left)
and 50° (right).

cos 3sind + cos dsin B cos pee = 0, (29)

with solutions ©

cos Bsind

4+ == 7 arccos - - 30
(A sin B cos § (30)
From solution (30) values of A\ are readily extracted from
oS Aee = C083¢088 ~ sind sin 3 ¢os pec (31)
sinAee =  sinFsingee
but since 3 < 90° then A, < 90°
Ace,+ = arcsin(sin 3 sin @, ), (32)
while the most general case A # 0 has solution
Ace+ = A+ arcsin(sin Fsin ). (33)

The phases of the intersections are recovered from the equation of the scan circle S with
equation

CO8 3¢08 Ace COS Ape  — SN A, 0 0
S{e, A, 3) = cos 3 5in Age + $inAqe oS A O sin Jsing . (34)

0 0 0 1 sin 3 cos

the pixel is crossed for p = 1y solution of the equation

®Note that the solutions exists if | cos dsindl > [sin 3 cos 8|, equivalent to condition (27).
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Kernel 2

Kernel 1
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Figure 6: Crossing algorithm and patching for the second scan survey,

Cos o
S(prls /\cm,ﬁ) = 0 3
sin o

so that

1 sind
1.+ = £ arccos | - .
Vo sin 3

5.2.3 The Algorithm

From A, 5, 3 there are at most two solutions defined as 1 and 2
following subcases

case [§| > 3,

No solution exists.

case 4] == (),
! 3
Yool = 5T Aol = A= B, ppg = il
y | 1
Yee2 = §7T7 ’\C(:‘Q = A+ /33 Ppxl,2 = 571‘;
case {(5} == lj

case (< g < 3,

secd e Yol = A Ace Ppxl 1l = 2o~
Fag,2 = 2 rees ’\‘702 = A + /\«m Ppxtz = Pt

(35)

(36)

50 that there are the

(37)
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Circle above the equator, tested with the sphere
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