Internal Report INAF/IASF Bologna 528/2008

# WCAM prototype using Particle Swarm Optimization

Valerio Martorelli<sup>1</sup> Fabrizio Villa<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>IASF Bologna - Italy - martorelli@iasfbo.inaf.it <sup>2</sup>IASF Bologna - Italy - villa@iasfbo.inaf.it

# WCAM Prototype using Particle Swarm Optimization

V. Martorelli and F. Villa INAF/IASF Bologna - Italy martorelli@iasfbo.inaf.it villa@iasfbo.inaf.it

October 30, 2008

#### Abstract

This technical note reports a new WCAM prototype designed using "Particle Swarm Optimization". The design, a dual profiled corrugated horn (DPCH), is obtained taking into account mechanical constraints and electromagnetic specifications.

### 1 Introduction

The Particle Swarm Optimization (PSO) is a stochastic evolutionary algorithm used to search for the global optimum of complex problems. It is based on the behavior of insect swarms and exploits the solution space by taking into account the experience of the single insect as well as that the entire swarm. The algorithm (described in [3]) has been used to design complex shape antennas and waveguide impedance transformers. In this work we adapted it to design a dual profiled corrugated horn. This design follows the horn design reported in [4], WCAM-PROT01.

## 2 Antenna Speecifications

The antenna requirements and mechanical constraints are specified in the following table:

| Band = $80 - 110 \text{ GHz}$              | Input waveguide radius = 1.48mm        |
|--------------------------------------------|----------------------------------------|
| Return Loss $< -30 \text{ dB}$             | Step of corrugations $= 1 \mathrm{mm}$ |
| Peak $\chi$ -polarization level $<$ -30 dB | Width corrugation $= 0.7 \text{mm}$    |

#### Table 1: Antenna specifications

The corrugation step is fixed because WCAM project propose to use stacked alluminum plates of 1mm width. Other parameters as side lobe level and aper-

ture radius exist but they aren't yet fixed because at present they are under investigation. For this work we assume the following mechanical properties:

- number of corrugations = 25;
- aperture radius = 5 mm;

The number of corrugations chosen in this design is less that ones used for the WCAM-PROT01 because the goal is to obtain shortest horn with same performance.

#### 3 Geometry

Usually a corrugated feed horn is composed by three parts (fig. 1):

- the smooth-walled input waveguide;
- the mode converter;
- the HE<sub>11</sub> waveguide.



Figure 1: Four parts of the horn

The smooth-walled input waveguide permits the connection between the input-waveguide (radius 1.49mm) supporting the  $TE_{11}$  mode and the corrugated region of the horn. In this work a transition composed by 4 step (from 1.64mm to 1.94 mm of radius) of 1mm width is used in order to use existing component (fig. 2).

The mode converter is the first corrugated part and is designed to provide a smooth transition from the  $TE_{11}$  to the  $HE_{11}$  mode.

The  $HE_{11}$  waveguide is the second corrugated part. It supports the propagation of the  $HE_{11}$  hybrid mode from its generation to its radiation. We have taken into account a fourth part as well, a plate of 3mm width placed at the aperture with grooves of 0.79mm depth parallel to the axis of the horn (fig. 3). This modified aperture is described in [5] and won't be modified.



Figure 2: Stepped smooth-walled transition



Figure 3: Aperture region described in [5]

#### 4 Main design

The first step is to search for a possible candidate, building a design starting from analitical formulas. The profile chosen is tangential/exponential (eq. 1).

$$a_{j} = a|_{z=j} = \begin{cases} a_{in} + (a_{s} - a_{in}) \left[ (1 - A) \frac{j}{L_{s}} + A \tan^{\rho} \left( \frac{\pi j}{4L_{s}} \right) \right] & j \le L_{s} \\ a_{s} + \exp \left[ \ln(1 + a_{out} - a_{s}) \frac{j - L_{s}}{L - L_{s}} \right] - 1 & Ls + 1 \le j \le L \end{cases}$$
(1)

where  $a_{in}$  is the input radius,  $a_{out}$  is the aperture radius,  $a_s$  is the radius in the transition section between profiles, L is the total length,  $L_s$  is the length of first profile, A and  $\rho$  represent two parameters that define the tangential profile. A varies in the range [0; 1], whereas the parameter  $\rho$  is generally equal to two, but taking values such that  $0.1 \leq \rho \leq 5$  gives rise to interesting profiles with their own sets of properties.

Every corrugation step consists of a corrugation of 0.7 mm width and a tooth of 0.3 mm width. The j-th corrugation depth  $(d_j)$  is obtained by the following rules ([2]):

if  $1 \le j \le N_{MC} + 1$ 

$$d_j = \lambda_c \left\{ \sigma - \frac{j-1}{N_{MC}} \left( \sigma - \frac{1}{4} \exp\left[\frac{1}{\alpha (k_c a_j)^{\beta}}\right] \right) \right\}$$
(2)

else  $(N_{MC} + 2 \le j \le N)$ 

$$d_{j} = \frac{\lambda_{c}}{4} \exp\left[\frac{1}{\alpha(k_{c}a_{j})^{\beta}}\right] - \left(\frac{j - N_{MC} - 1}{N - N_{MC} - 1}\right) \left\{\frac{\lambda_{c}}{4} \exp\left[\frac{1}{\alpha(k_{c}a_{out})^{\beta}}\right] - \frac{\lambda_{out}}{4} \exp\left[\frac{1}{\alpha(k_{out}a_{out})^{\beta}}\right]\right\}$$
(3)

where  $N_{MC}$  is the number of corrugations for the mode converter, N is the total number of corrugations,  $\sigma$  ( $0.4 \le \sigma \le 0.6$ ) is a percentage factor for the first corrugation depth of the mode converter,  $\alpha$  and  $\beta$  are two parameters,  $k_c = 2\pi f_c/c_0$ ,  $k_{out} = 2\pi f_{out}/c_0$ ,  $c_0$  is the speed of light,  $f_c$  and  $f_{out}$  are design parameters (the first corrugation is depth  $\lambda/2|_{f=f_c}$  whereas the last corrugation is depth  $\lambda/4|_{f=f_{out}}$ ). In this work  $f_c = f_{out}$ .

In [2] authors approximate  $\alpha$  as 2.114 and  $\beta$  as 1.134 approximating the solution for the surface reactance equation. In this work this parameters are modified to optimize the antenna.

Figure 4 shows the geometry of the DPCH.

#### 5 Optimization Parameter Choice

The physical and electromagnetic characteristics of the horn can be controlled by a combination of several parameters. In the table 2 a choice of which parameters will be modified and which ones will be fixed is showed.



| Parameter              | To optimize | Fixed | Range/Value                |
|------------------------|-------------|-------|----------------------------|
| Number of corrugations |             | x     | 25                         |
| Corrugation step       |             | x     | 1mm                        |
| Corrugation width      |             | x     | 0.7mm                      |
| Input Radius           |             | x     | 1.94 mm                    |
| Output Radius          |             | x     | 5 mm                       |
| A                      | x           |       | $0.1 \div 1$               |
| ρ                      | x           |       | $0.1 \div 5.0$             |
|                        | x           |       | $3.0 \div 25.0 \text{ mm}$ |
| as                     | x           |       | $2.0 \div 4.5 \text{ mm}$  |
| $f_c$                  | x           |       | $80 \div 110 \text{ GHz}$  |
| fout                   |             | x     | $f_c$                      |
| σ                      |             | x     | 0.5                        |
| N <sub>MC</sub>        |             | x     | 6                          |
| α                      | x           |       | $2.0 \div 3.0$             |
| β                      | x           |       | $1.0 \div 2.0$             |

Figure 4: Geometrical parameters of a DPCH

Table 2: Design parameters

### 6 Objective function

A objective function  $(f_{obj})$  quantifies the goodness of a solution in a optimization algorithm. It takes the values of each parameters and returns a single number representing how good the solution is. For this work the design parameters are fed into a horn simulation program that creates a horn cross section and simulates the electromagnetic performance. Definition of the objective function is not straightforward in many cases and often is performed iteratively if the fittest solutions produced by PSO are not what is desired. The following function has been used for the optimization:

$$f_{obj} = \omega_{RL} \cdot \sum_{i=1}^{N_f} f_{RL}^i + \omega_{\chi} \cdot \sum_{i=1}^{N_f} f_{\chi}^i$$

$$f_{RL}^i = \begin{cases} S_{11}^i(dB) - S_{11}^{th}(dB), & \text{if } S_{11}^i > S_{11}^{th} \\ 0, & \text{etherwise} \end{cases}$$

$$f_{\chi}^i = \begin{cases} \chi_{pol}^i(dB) - \chi_{pol}^{th}(dB), & \text{if } \chi_{pol}^i > \chi_{pol}^{th} \\ 0, & \text{etherwise} \end{cases}$$
(4)

 $S_{11}^{th}$  and  $\chi_{pol}^{th}$  (threshold values) represent the maximum desidered levels of return loss and peak cross-polarization,  $S_{11}^i$  and  $\chi_{pol}^i$  represent the return loss and peak cross-polarization evaluated at i-th frequency,  $N_f$  is the number of frequencies used to compute the performances,  $\omega_{RL}$  and  $\omega_{\chi}$  are two weight factor. The choice of these parameters is the following:

- $S_{11}^{th} = -32 \text{ dB}$
- $\chi^{th}_{pol}$ =-32 dB
- $\omega_{RL} = 0.7$
- $\omega_{\chi} = 0.3$

The threshold values are less than specifications to force the optimizer to find out a better design.

 $N_f$  is a very important parameter because it indicates which frequencies are controlled by optimizer. High values indicate that optimizer works well in the entire band but it is more time-consuming. Low values permit to have a fast solution but don't permit to know the correct behavior in the work band. We have selected the following set of values:  $\bar{f}_{GHz} = \{80, 85, 90, 97, 100, 105, 110\}$ . In fig. 5 an example of single dimension function Y(X) is showed, where the red-stripes regions indicate where function is penalized ( $Y^{TH}$  is a threshold value).

#### 7 Simulation Results

Simulation has been performed on AMD Athlon Dual Core Processing 4400+ (2200 MHz) using a 32bit commercial electromagnetic simulator (SRSR-4d, France Telecom, [1]). The total time has been of about 48h.

In the fig. 6 the trend of the fitness function is depicted. It shows that the PSO is able to find the optimum design for this problem.



Figure 5: An example of single dimension function.  $Y^{TH}$  is a threshold value and the redstripes regions indicate where function is penalized



Figure 6: The fitness function evaluated for every iteration

| Parameter | A    | ρ    | $L_s$ | $a_s$ | $f_c$ | α    | β    |
|-----------|------|------|-------|-------|-------|------|------|
| Value     | 0.28 | 1.86 | 15.43 | 3.75  | 103.1 | 2.78 | 1.74 |

 ${\bf Table \ 3:} \ Design \ parameters$ 



Figure 7: Best profile found by optimizer

In the table 3 the ouput parameter of the optimizer is showed.

The performance analysis has been performed from 80 GHz to 110 GHz with a step of 0.25 GHz. In the following figures the impedance and radiation performance are reported.



Figure 8: Directivity as function of frequency



Figure 9: Return loss as function of frequency



**Figure 10:** Peak  $\chi$ -polarization level respect to maximum radiation as function of frequency



Figure 11: Radiation Patterns @ 80 GHz



Figure 12: Radiation Patterns @ 85 GHz



Figure 13: Radiation Patterns @ 90 GHz



Figure 14: Radiation Patterns @ 95 GHz



Figure 15: Radiation Patterns @ 100 GHz

V. Martorelli and F. Villa



Figure 16: Radiation Patterns @ 105 GHz



Figure 17: Radiation Patterns @ 110 GHz

## 8 Numerical data

### 8.1 Geometry

| Ν  | L [mm] | R [mm] | Ν  | L [mm] | R [mm] | Ν  | L [mm] | R [mm] |
|----|--------|--------|----|--------|--------|----|--------|--------|
|    |        |        |    |        |        |    |        |        |
| 1  | 3.0    | 1.49   | 20 | 0.7    | 3.36   | 39 | 0.3    | 3.49   |
| 2  | 1.0    | 1.64   | 21 | 0.3    | 2.48   | 40 | 0.7    | 4.41   |
| 3  | 1.0    | 1.79   | 22 | 0.7    | 3.43   | 41 | 0.3    | 3.64   |
| 4  | 1.0    | 1.87   | 23 | 0.3    | 2.57   | 42 | 0.7    | 4.56   |
| 5  | 1.0    | 1.94   | 24 | 0.7    | 3.52   | 43 | 0.3    | 3.80   |
| 6  | 0.7    | 3.47   | 25 | 0.3    | 2.66   | 44 | 0.7    | 4.71   |
| 7  | 0.3    | 2.02   | 26 | 0.7    | 3.60   | 45 | 0.3    | 3.97   |
| 8  | 0.7    | 3.45   | 27 | 0.3    | 2.76   | 46 | 0.7    | 4.88   |
| 9  | 0.3    | 2.07   | 28 | 0.7    | 3.70   | 47 | 0.3    | 4.15   |
| 10 | 0.7    | 3.41   | 29 | 0.3    | 2.86   | 48 | 0.7    | 5.06   |
| 11 | 0.3    | 2.12   | 30 | 0.7    | 3.80   | 49 | 0.3    | 4.35   |
| 12 | 0.7    | 3.37   | 31 | 0.3    | 2.97   | 50 | 0.7    | 5.25   |
| 13 | 0.3    | 2.18   | 32 | 0.7    | 3.91   | 51 | 0.3    | 4.55   |
| 14 | 0.7    | 3.34   | 33 | 0.3    | 3.09   | 52 | 0.7    | 5.45   |
| 15 | 0.3    | 2.25   | 34 | 0.7    | 4.02   | 53 | 0.3    | 4.77   |
| 16 | 0.7    | 3.31   | 35 | 0.3    | 3.21   | 54 | 0.7    | 5.66   |
| 17 | 0.3    | 2.32   | 36 | 0.7    | 4.14   | 55 | 0.3    | 5.00   |
| 18 | 0.7    | 3.28   | 37 | 0.3    | 3.35   |    |        |        |
| 19 | 0.3    | 2.40   | 38 | 0.7    | 4.27   |    |        |        |

Table 4: Geometry of the horn described as a chain of sections. N is the number of section,L is the length and R is the radius of every section.

| F [GHz] | Directivity [dBi] | Return Loss [dB] | Peak $\chi$ -level |
|---------|-------------------|------------------|--------------------|
|         |                   |                  | Polarization [dB]  |
| 80      | 16.6277           | -33.0113         | -29.929            |
| 80.25   | 16.6572           | -32.865          | -30.0396           |
| 80.5    | 16.6849           | -32.6562         | -30.1417           |
| 80.75   | 16.7096           | -32.3599         | -30.2664           |
| 81      | 16.7506           | -32.4998         | -30.6051           |
| 81.25   | 16.7646           | -32.0076         | -30.8491           |
| 81.5    | 16.7788           | -31.5172         | -31.1047           |
| 81.75   | 16.7935           | -31.0931         | -31.3597           |
| 82      | 16.8072           | -30.7463         | -31.5968           |
| 82.25   | 16.8218           | -30.5086         | -31.8272           |
| 82.5    | 16.8363           | -30.3694         | -32.0369           |
| 82.75   | 16.8535           | -30.3311         | -32.2493           |
| 83      | 16.8701           | -30.3611         | -32.3628           |
| 83.25   | 16.8893           | -30.4491         | -32.3918           |
| 83.5    | 16.9093           | -30.5748         | -32.2979           |
| 83.75   | 16.9343           | -30.6962         | -32.1297           |
| 84      | 16.9619           | -30.7886         | -31.8993           |
| 84.25   | 16.9953           | -30.8283         | -31.6553           |
| 84.5    | 17.0296           | -30.8473         | -31.4441           |
| 84.75   | 17.0671           | -30.8511         | -31.2914           |
| 85      | 17.1051           | -30.8113         | -31.2261           |
| 85.25   | 17.1398           | -30.7604         | -31.2787           |
| 85.5    | 17.1705           | -30.7034         | -31.3613           |
| 85.75   | 17.1986           | -30.6383         | -31.469            |
| 86      | 17.2268           | -30.5623         | -31.5737           |
| 86.25   | 17.256            | -30.481          | -31.7405           |
| 86.5    | 17.2861           | -30.404          | -31.9421           |
| 86.75   | 17.3196           | -30.3935         | -32.1717           |
| 87      | 17.3531           | -30.3671         | -32.4095           |
| 87.25   | 17.3872           | -30.3759         | -32.6259           |
| 87.5    | 17.4225           | -30.4298         | -32.8271           |
| 87.75   | 17.4586           | -30.5372         | -33.0135           |
| 88      | 17.4961           | -30.6852         | -33.1777           |
| 88.25   | 17.5349           | -30.8776         | -33.3235           |
| 88.5    | 17.5733           | -31.1554         | -33.4038           |
| 88.75   | 17.6109           | -31.4675         | -33.4225           |
| 89      | 17.6459           | -31.8247         | -33.4061           |
| 89.25   | 17.678            | -32.2232         | -33.3709           |
| 89.5    | 17.7071           | -32.6339         | -33.3602           |
| 89.75   | 17.734            | -33.0546         | -33.3751           |
| 90      | 17.7591           | -33.4634         | -33.426            |

### 8.2 Electromagnetic performances

**Table 5:** Electromagnetic Performances in terms of directivity, return loss and  $\chi$ -polarization from 80 to 90GHz.

F Bologna V. Martorelli and F. Villa

| F [GHz] | Directivity [dBi] | Return Loss [dB] | Peak $\chi$ -level |
|---------|-------------------|------------------|--------------------|
|         |                   |                  | Polarization [dB]  |
| 90.25   | 17.7828           | -33.8473         | -33.5248           |
| 90.5    | 17.8069           | -34.1599         | -33.6966           |
| 90.75   | 17.8302           | -34.4164         | -33.9262           |
| 91      | 17.854            | -34.5873         | -34.2228           |
| 91.25   | 17.8778           | -34.6793         | -34.5693           |
| 91.5    | 17.9009           | -34.7087         | -34.9272           |
| 91.75   | 17.9222           | -34.7066         | -35.2368           |
| 92      | 17.9406           | -34.6922         | -35.4356           |
| 92.25   | 17.9543           | -34.7427         | -35.4865           |
| 92.5    | 17.9642           | -34.8643         | -35.3919           |
| 92.75   | 17.9719           | -35.0829         | -35.1965           |
| 93      | 17.9801           | -35.4069         | -34.9598           |
| 93.25   | 17.9917           | -35.8377         | -34.7299           |
| 93.5    | 18.007            | -36.3482         | -34.5563           |
| 93.75   | 18.0262           | -36.9331         | -34.452            |
| 94      | 18.0485           | -37.5333         | -34.4103           |
| 94.25   | 18.0733           | -38.193          | -34.4047           |
| 94.5    | 18.0983           | -38.8629         | -34.4213           |
| 94.75   | 18.1216           | -39.5166         | -34.4526           |
| 95      | 18.1423           | -40.1313         | -34.4779           |
| 95.25   | 18.1596           | -40.6714         | -34.503            |
| 95.5    | 18.1751           | -41.003          | -34.5381           |
| 95.75   | 18.188            | -41.2992         | -34.5753           |
| 96      | 18.2008           | -41.4467         | -34.633            |
| 96.25   | 18.2143           | -41.5015         | -34.7378           |
| 96.5    | 18.2306           | -41.2875         | -34.963            |
| 96.75   | 18.2477           | -39.6864         | -36.2658           |
| 97      | 18.2895           | -41.4608         | -32.9421           |
| 97.25   | 18.3025           | -41.5794         | -33.7747           |
| 97.5    | 18.3298           | -41.3549         | -33.8907           |
| 97.75   | 18.3582           | -41.1736         | -33.8934           |
| 98      | 18.3861           | -41.0132         | -33.8585           |
| 98.25   | 18.4126           | -40.8911         | -33.8093           |
| 98.5    | 18.4372           | -40.8107         | -33.77             |
| 98.75   | 18.4602           | -40.7905         | -33.7566           |
| 99      | 18.4814           | -40.8244         | -33.7615           |
| 99.25   | 18.5038           | -40.9655         | -33.6145           |
| 99.5    | 18.5416           | -41.3436         | -32.2921           |
| 99.75   | 18.6322           | -42.3765         | -31.8125           |
| 100     | 18.7427           | -44.0539         | -33.5851           |

**Table 6:** Electromagnetic Performances in terms of directivity, return loss and  $\chi$ -polarization from 90.25 to 100GHz.

| F [GHz] | Directivity [dBi] | Return Loss [dB] | Peak $\chi$ -level |
|---------|-------------------|------------------|--------------------|
|         |                   |                  | Polarization [dB]  |
| 100.25  | 18.7802           | -45.1338         | -36.6367           |
| 100.5   | 18.7829           | -45.7213         | -38.9608           |
| 100.75  | 18.7825           | -46.0487         | -39.032            |
| 101     | 18.7893           | -46.3293         | -38.847            |
| 101.25  | 18.8035           | -46.313          | -38.6621           |
| 101.5   | 18.8255           | -46.0212         | -37.6596           |
| 101.75  | 18.8565           | -45.501          | -36.7568           |
| 102     | 18.893            | -44.808          | -35.9547           |
| 102.25  | 18.9343           | -44.0825         | -35.3354           |
| 102.5   | 18.9779           | -43.3454         | -34.8828           |
| 102.75  | 19.0205           | -42.7727         | -34.5335           |
| 103     | 19.0604           | -42.3929         | -34.2525           |
| 103.25  | 19.095            | -42.1957         | -33.6102           |
| 103.5   | 19.1228           | -42.2248         | -33.0447           |
| 103.75  | 19.1427           | -42.4524         | -32.5967           |
| 104     | 19.1535           | -42.8856         | -32.325            |
| 104.25  | 19.1571           | -43.481          | -32.2727           |
| 104.5   | 19.1556           | -44.1501         | -32.4615           |
| 104.75  | 19.1531           | -44.8            | -32.8534           |
| 105     | 19.1531           | -45.3018         | -33.4092           |
| 105.25  | 19.1581           | -45.5223         | -34.0628           |
| 105.5   | 19.1704           | -45.2807         | -34.6818           |
| 105.75  | 19.1839           | -44.6928         | -35.3797           |
| 106     | 19.2002           | -43.8088         | -36.074            |
| 106.25  | 19.2185           | -42.7869         | -36.7272           |
| 106.5   | 19.237            | -41.7565         | -37.3663           |
| 106.75  | 19.2538           | -40.7907         | -38.0679           |
| 107     | 19.268            | -39.9151         | -38.9372           |
| 107.25  | 19.2799           | -39.1395         | -40.1113           |
| 107.5   | 19.2902           | -38.4579         | -40.0328           |
| 107.75  | 19.301            | -37.8488         | -39.627            |
| 108     | 19.3149           | -37.2933         | -39.2723           |
| 108.25  | 19.3342           | -36.7774         | -38.9804           |
| 108.5   | 19.3602           | -36.2879         | -38.5878           |
| 108.75  | 19.3938           | -35.8157         | -36.7075           |
| 109     | 19.4332           | -35.3659         | -35.2501           |
| 109.25  | 19.4762           | -34.9113         | -34.1247           |
| 109.5   | 19.5208           | -34.4248         | -33.2556           |
| 109.75  | 19.5649           | -33.8774         | -32.5658           |
| 110     | 19.6074           | -33.2569         | -31.8638           |

**Table 7:** Electromagnetic Performances in terms of directivity, return loss and  $\chi$ -polarization from 100 to 110GHz

INAF/IASF Bologna V. Martorelli and F. Villa

### References

- [1] http://www.francetelecom.com.
- [2] C. Granet e G. L. James. Design of corrugated horns: A primer. *IEEE* Antennas and Propagation Magazine, vol.47, No.2, 2005.
- [3] V. Martorelli. Algoritmo di ottimizzazione particle swarm modificato. Internal Report 456/2007, INAF/IASF Bologna, 2006.
- [4] F. Villa e V. Martorelli. Wcam prototype feed horn design (wcam-prot01). Internal Report 463/2007, INAF/IASF Bologna, 2007.
- [5] F. Villa e V. Martorelli. Wcam prototype feed horn with aperture grooves (wcam-prot01-a). Internal Report 506/2007, INAF/IASF Bologna, 2007.