The angular response
of a rectangular mechanical collimator.
The case of the HXMT collimators

Mauro Orlandini1, Lara Sambo2, Filippo Frontera1,2

1 INAF/IASF Bologna, via Gobetti 101, Bologna, Italy
2 Ferrara University, Physics Department, via Saragat 1, Ferrara, Italy
The angular response of a rectangular mechanical collimator.
The case of the HXMT collimators

Contents

Table of Contents 2
List of Figures 3
List of Tables 4
1 Goal of the report 5
2 Introduction 5
3 Angular response: \(\theta \) and \(\phi \) dependence 5
 3.1 Constraints on \(\theta \) and \(\phi \) 7
4 The HXMT collimator response for 18 collimators 9
5 Acknowledgements 9
6 References 13
List of Figures

1. The FOVs of the 18 mechanical collimators aboard HXMT .. 5
2. Schematic view of the collimator cell: 3D view ... 6
3. Schematic view of the collimator cell: top view ... 6
4. The HXMT collimator response function \(R(\theta, \varphi) \) .. 8
5. Constraints on the \(\theta \) and \(\varphi \) plane .. 9
6. The HXMT angular response integrated for all the 18 collimators ... 10
7. The HXMT angular response integrated in \(\varphi \) ... 11
8. Gaussian and Lorentzian fit to the HXMT angular response integrated in \(\varphi \) 12
List of Tables

1 Best fit parameters for a Gaussian and Lorentzian fit to the HXMT angular response . . . 11
1 Goal of the report

In this report we present the general theory to compute the angular response of a rectangular mechanical collimator. We find the analytical dependence on both the azimuthal angle, \(\theta \), and the polar angle, \(\varphi \). Then we apply the general formalism to the case of the collimators aboard the Hard X–ray Telescope (HXMT).

2 Introduction

The high energy (HE) instrument aboard the Chinese Hard X–ray Modulation Telescope (HXMT) consists of 18 cylindrical detectors, each formed by a phoswich module and its collimator. Each detector unit is a NaI(Tl)/CsI(Na) phoswich scintillation detector with a diameter of 19 cm.

Because the image reconstruction is based on the so-called Direct Demodulation technique [2], the collimator field of view (FOV) must be asymmetric. According to [1], the collimators define a FOV of \(5.71^\circ \times 1.12^\circ \) (that we propose to increase to \(5.86^\circ \times 1.12^\circ \) [3]). The directions of the long axes of the 18 FOVs are different, varying with a step size of \(10^\circ \) (see Figure 1). The angular response of each collimator is then combined together in order to reconstruct the position of a source.

We will begin by computing the azimuthal and polar dependence of the angular response of a rectangular mechanical collimator. Then we will combine together the angular responses of all the 18 collimators in the geometrical configuration as shown in Figure 1 to compute the cumulative HXMT angular response.

In the following we will assume that the collimator walls are perfectly opaque to the X–ray radiation. The case of X–ray transmission through the collimator walls is treated into detail in [3]. The collimator cell dimensions are: \(a = 30.8 \) mm, \(b = 6 \) mm, \(h = 300 \) mm.

3 Angular response: \(\theta \) and \(\varphi \) dependence

In Figure 2 we show a sketch of a collimator cell, with the shadows of its walls cast on its interior (see Figure 3 for a view from above). Our goal is to find a relation between the two angles \(\theta \) and \(\varphi \) and the area of the illuminated part of the detector, that is the rectangle \(KBHD'' \), shown in red in Figure 2.
The angular response of a rectangular mechanical collimator. The case of the HXMT collimators

First, let us start with the right triangle $CC'C''$, for which:

$$C'C'' = \frac{h}{\cos \theta} \quad CC'' = h \tan \theta \quad (1)$$

Then the triangle $B'C'C''$ for which, by applying the Carnot theorem, we can write

$$B'C''^2 = b^2 + \frac{h^2}{\cos^2 \theta} - \frac{2bh}{\cos \theta} \cos \alpha \quad (2)$$

Then the right triangle $BB'C''$ for which, by applying the Pythagorean theorem, we can write

$$BC''^2 = B'C''^2 - h^2$$

$$= b^2 + \frac{h^2}{\cos^2 \theta} - \frac{2bh}{\cos \theta} \cos \alpha - h^2$$

$$= b^2 + h^2 \left(\frac{1}{\cos^2 \theta} - 1 \right) - \frac{2bh}{\cos \theta} \cos \alpha - h^2 \quad (3)$$

Finally, by applying the Carnot theorem to the triangle BCC'' we have

$$BC''^2 = b^2 + h^2 \tan^2 \theta - 2bh \tan \theta \cos \varphi \quad (4)$$

where φ is the angle BCC'', that is the angle measured on the detector plane. By comparing Eq. (3) and (4) we obtain
The angular response of a rectangular mechanical collimator.

The case of the HXMT collimators

\[b^2 + h^2 \tan^2 \theta - \frac{2bh}{\cos \theta} \cos \alpha = b^2 + h^2 \tan^2 \theta - 2bh \tan \theta \cos \varphi \]

from which the requested relation between the three angles \(\theta, \varphi \) and \(\alpha \):

\[\cos \varphi = \frac{\cos \alpha}{\sin \theta} \]

Two important quantities necessary to compute the area of the rectangle \(KBH D'' \) are \(HC \) and \(HC'' \), which are

\[HC'' = h \tan \theta \sin \varphi \quad \quad HC = h \tan \theta \cos \varphi \]

We now have all the elements to compute the area of \(KBH D'' \) in terms of the angles \(\theta \) and \(\varphi \). Indeed

\[A_{KBH D''} = KB \times BH \\
= (a - AK)(b - HC) = (a - HC'')(b - HC) \\
= (a - h \tan \theta \sin \varphi)(b - h \tan \theta \cos \varphi) \]

The normalized (that is, divided by \(ab \)) illuminated area, or the collimator angular response, is

\[R(\theta, \varphi) = \left[1 - \frac{h}{a} \tan \theta \sin \varphi \right] \left[1 - \frac{h}{b} \tan \theta \cos \varphi \right] \]

In Figure 4 we show a plot of \(R(\theta, \varphi) \) given the cell dimensions for the HXMT collimator geometry.

3.1 Constraints on \(\theta \) and \(\varphi \)

In order to have the detector illuminated by the X–rays it is necessary that the area of the rectangle \(KBH D'' \) be not zero, that is

\[0 \leq HC'' \leq a \implies 0 \leq h \tan \theta \sin \varphi \leq a \]

\[0 \leq HC \leq b \implies 0 \leq h \tan \theta \cos \varphi \leq b \]

A constraint on the angle \(\theta \) is obtained by noticing that its maximum value \(\theta_{\max} \) is achieved in correspondence of the diagonal of the collimator \(BD' \), that is

\[\tan \theta_{\max} = \frac{\sqrt{a^2 + b^2}}{h} \]

In Figure 5 we show the above mentioned constraints, in a \(\varphi-\theta \) plane, for the HXMT collimator cell dimensions.
The angular response of a rectangular mechanical collimator.
The case of the HXMT collimators

Figure 4: The HXMT collimator response function $R(\theta, \varphi)$. Top: R for different values of the φ angle. Bottom: 3-dimensional plot in polar coordinates.
The angular response of a rectangular mechanical collimator. The case of the HXMT collimators

Figure 5: Constraints on the θ and φ angles in order to have an illuminated area in the detector plane. We used the HXMT collimator cell dimensions $a = 30.8$ mm, $b = 6$ mm, $h = 300$ mm. In this case $\theta_{\text{max}} = 5.971^\circ$.

4 The HXMT collimator response for 18 collimators

By means of Eq. (9) it is now possible to build the HXMT total angular response function (a sort of a “Point Spread Function”) by summing up all the 18 collimator angular responses. The result is shown in Figure 6, where in red are marked the Full Width at Zero Intensity (FWZI) and the Full Width at Half Maximum (the latter being equal to 1.60°).

The angular response integrated in φ, that is a slice along a $\varphi = \text{constant}$ direction, is shown in Figure 7. The shape does not resemble a Gaussian at all, but it is more similar to a Lorentzian, as is evident from Figure 8, where the two fits are compared. In Table 1 we summarize the fit results.

Acknowledgements

We would like to thank Profs. Giuliano Mazzanti and Valter Roselli for useful discussions, in particular on the derivation of Eq. (6).
The angular response of a rectangular mechanical collimator. The case of the HXMT collimators

Figure 6: The HXMT angular response integrated for all the 18 HXMT collimators. Top: contour plot (in red the FWZI and FWHM; the latter being 1.60°). Bottom: 3-dimensional plot in polar coordinates.
Figure 7: The HXMT angular response integrated in ϕ. It has been obtained by slicing Figure 6 along a $\phi = \text{constant}$ direction. The measured FWHM is 1.60°.

Table 1: Best fit parameters for the Gaussian and Lorentzian fit to the HXMT angular response integrated in ϕ. The measured FWHM is 1.60°, while from the Gaussian fit it results 2.039°.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gaussian</th>
<th>Lorentzian</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>7.5×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td>0.866</td>
<td></td>
</tr>
<tr>
<td>GN</td>
<td>84.58</td>
<td></td>
</tr>
<tr>
<td>LC</td>
<td></td>
<td>2.5×10^{-10}</td>
</tr>
<tr>
<td>LW</td>
<td></td>
<td>1.595</td>
</tr>
<tr>
<td>LN</td>
<td></td>
<td>94.72</td>
</tr>
<tr>
<td>χ^2/dof (497 dof)</td>
<td>19</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Gaussian $\equiv G \exp \left[\frac{1}{2} \left(\frac{x - GC}{GW} \right)^2 \right]$; Lorentzian $\equiv \frac{LN}{1 + \left(\frac{2(x - LC)}{LW} \right)^2}$.
Figure 8: Gaussian (Top) and Lorentzian (Bottom) fit to the HXMT angular response integrated in φ shown in Figure 7. It is quite evident that the shape is better described in terms of a Lorentzian function. The best fit parameters are listed in Table 1.
The angular response
of a rectangular mechanical collimator.
The case of the HXMT collimators

References

