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SUMMARY – The density contrast of the matter in the universe, related to
the evolution of the matter power spectrum, can amplify the signal of the free-free
process in the plasma. In this report is described a technique able to derive the
variance of the matter power spectrum for different cosmologies and with differ-
ent values of the cut-off parameter kmax, the maximum wave number adopted to
integrate the power spectrum for the estimate of the variance. We numerically
computed at various redshifts the power spectrum, using a modified version of the
code CAMB (the cosmological Boltzmann code for computing the angular power
spectrum of the anisotropies of the cosmic microwave background) for various
cosmological models and parameters, and a large value of kmax, and then numer-
ically integrated it up to the desired value of kmax to compute the variance as
function of redshift. Suitable analytical approximations of the numerical results
are found. This results can be easily implemented in any code dedicated to the
CMB spectral distortions to properly compute the amplification of the signal of
the free-free process in the plasma because of matter density contrast.
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1 Introduction

The density contrast of the matter in the universe, related to the evolution of the matter
power spectrum, can amplify the signal of the free-free process in the plasma. In this report
we describe an analytical approximation able to derive the amplification correction factor
of the free-free parameter, or estimates of its value, with a modified version of CAMB1 [7],
the cosmological Boltzmann code for computing the angular power spectrum (APS) of the
anisotropies of the cosmic microwave background (CMB).

2 Matter Power Spectrum

The evolution of the density perturbation power spectrum depends on the nature of
the dominant particles in the primordial universe, hence baryonic or non baryonic matter
(hot, warm or cold), and on the characteristic of the fluctuations themselves, adiabatic or
isothermal, curvature or isocurvature. This modulation on the primordial power spectrum is
quantified by the Transfer Function.
If 〈ρ〉 is the mean density of the universe and ρ(~x) the density in the position ~x of the volume,
we can define the density contrast as [8]:

δ(~x) =
ρ(~x) − 〈ρ〉

〈ρ〉
, (1)

or, expanding it in terms of the Fourier series, as:

δ(~x) =
∑

~k

δ~k
exp(i~k · ~x), (2)

where ~k is the wave number, inversely proportional to the linear dimension of the considered
volume of universe:

~k =
2π

L
~n. (3)

The density contrast is defined so that its mean value over the entire volume is null, but
in general its variance is not null and is given by the relation:

σ2 =
1

2π2

∫

∞

0
P (k)k2dk, (4)

where P (k), corresponding to δ2
k when one passes to continuous wavenumber and Fourier

transform, is the power spectrum of the density perturbation.
The variance depends on time due to the evolution of the fluctuations, and determines the
amplitude of the inhomogeneities. If we define a dimensionless quantity that represents the
variance contribution per unity logarithmic interval in k,

∆(k) =
1

2π2
P (k)k3, (5)

1http://camb.info/
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the variance can be written in the form:

σ2 =

∫

∞

−∞

∆(k)d ln k. (6)

3 Transfer Function

The primordial power spectrum, because of the evolution of the perturbations during the
linear and non linear regime, gave rise, on large scale, to the structure we observe today,
galaxies and clusters of galaxies. If we define the cosmological horizon as the radius rH(t) of
a hypothetical sphere centered on a virtual observer, we can say that a particle is in causal
connection with the observer if they are at a distance from each other less or equal to rH(t),
expressed by the relation [8]:

rH(t) = a(t)

∫ t

0

cdt′

a(t′)
=

c

H0

a(t)

a0

∫ a(t)

0

da′

a′[Ωw(a0/a′)1+3w + (1 − Ωw)]1/2
. (7)

When a certain scale with a characteristic perturbation relative to the various components
enters the horizon, the spectrum of power at that scale starts to be modulated by different
processes operating during the evolution of the universe.
The transfer function T (k) is a quantitative relation that represents the modulation of the
primordial power spectrum and is defined as follows:

P (k; tf ) =
b2(tf )

b2(tp)
T 2(k; tf )P (k; tp), (8)

where tp and tf are respectively an appropriate primordial time, usually the time after the
reheating that ends the epoch of inflation, and final time after the modulation epoch, P (k; t)
is the power spectrum and b(t) is the linear growth of the perturbation on large scales.

4 Bremsstrahlung process

During the interaction between radiation and ionized matter, the equilibrium distribu-
tion function is described by the Planck law, in which the evolution of the photon occupation
number is represented by the generalized kinetic equation [4]:

∂η

∂t
=

(

∂η

∂t

)

C

+

(

∂η

∂t

)

B

+

(

∂η

∂t

)

DC

+

(

∂η

∂t

)

cyc

+

(

∂η

∂t

)

sources

, (9)

where the first term in the right hand side is the collision term, hence the Compton scattering
(C), and the other terms refer to photon sources, Bremsstrahlung (B), double or Radiative
Compton (DC), cyclotron process (cyc) [13] and other possible photon production processes.
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The photon distribution law depends on time and on a dimensionless frequency x = hν
kT0

,
where T0 is the radiation temperature today.

The Kompaneets equation, a suitable approximation of the more general kinetic equa-
tion, describes the evolution of the photon occupation number [3]. Considering Compton
scattering, Bremsstrahlung and double Compton, it can be expressed by:

∂η

∂t
=

1

tCx2φ

∂

∂x

[

x4

[

φ
∂η

∂x
+ η(1 + η)

]]

+

[

KB
gB

x3
e

e−xe + KDC
gDC

x3
e

]

[1 − η(exe − 1)] , (10)

where gB and gDC are the Gaunt factors and:











xe = hν
kTe

= x
φ

φ = Te/Tr

, (11)

being Te and Tr = T0(1 + z) the electron and radiation temperature, respectively. The coef-
ficients K = K(z) are given by:



































KB(z) = 8π
3

e6h2ne(nH+4nHe)

m(6πmkTe)1/2(kTe)3
= K0B(z)φ−7/2

where K0B ≃ 2.6 × 10−25
(

T0

2.7K

)−7/2
(1 + z)5/2Ω̂2

b sec−1

KDC(z) = 4α
3πtγe

(

kTe
mc2

)2 ∫

∞

0 (1 + η)ηx4
edxe ≃ 8.15 × 10−40

(

T0

2.7K

)2

,

(12)

where α is the fine structure constant, tγe the photon electron collision time and tC the kinetic
equilibrium timescale between matter and radiation:











tγe = (neσT c)−1

tC = tγe
mc2

kTe
≃ 4.5 × 1028

(

T0

2.7K

)−1
φ−1Ω̂−1

b (1 + z)−4 sec

. (13)

Here, the term Ω̂b, related to the baryon density in units of the critical density, is defined
as:

Ω̂b = Ωb

[

H0

50Kms−1Mpc−1

]2

. (14)
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Eq. 12 makes evident the proportionality of the bremsstrahlung term to the square of the
baryon density.

In this work we take into account the density contrast in the intergalactic medium, and
we look for a lower limit in the value of the free-free parameter, first in the case of the
suppression reionization model in the framework of standard ΛCDM models, and then inves-
tigating alternative cosmological models. The correction factor to the free-free amplification
parameter is a quantity greater than one. Indeed, if we define the density as the contribution
of a mean term plus a small perturbation,

n = 〈n〉 + δ, (15)

and we consider that for the mass conservation law 〈δ〉 = 0, then

〈n2〉 = 〈n〉2 + 〈δ2〉, (16)

the correction factor can be expressed by:

〈n2〉

〈n〉2
= 1 +

〈δ2〉

〈n〉2
= 1 + σ2 > 1. (17)

5 Cold and Warm Dark Matter models

The Cold Dark Matter (CDM) standard cosmological model forecasts the existence of pri-
mordial cold and collisionless particles with negligible small velocity dispersion at the epoch
of radiation-matter equality and a derived matter power spectrum supporting small scale
structure formation. The distribution of velocities of the dark matter suppresses fluctuations
below its free streaming scale (the distance over which a particle travels), which increases
with the mean dark matter velocities and decreases with its mass. In this framework galaxy
formation is a hierarchical process, resulting in the typical bottom up scenario, in which small
scales collapse first and merge together leading to clusters of galaxies. Denser clumps, the
only that subsist the mergers, give rise to satellite galaxies [2].

Semi-analytical large scale simulations have proved that these CDM candidates, such as
WIMPs, cause an over-prediction of satellite galaxies with respect to those observed in the
Milky Way.

Within this context emerges the idea of Warm Dark Matter (WDM) particles as a possible
solution of the small scales CDM and cuspy halo problems, the latter related to the density
profile in virialized DM halos. This distribution function is useful to disentangle between
different hypothesis on DM, being characterized by cusps in CDM models, and by smoother
profile in observational data.

WDM candidates have intrinsic thermal velocities, so exhibit larger velocity dispersions,
compared to CDM particles, and present characteristic free streaming scales, which contribute
to determine clustering properties, such that small scale structures formation is suppressed.
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Typical particles masses are in the range of the keV scale, which is intermediate between
cold and hot DM masses, mwarm ∼ (1 − 10) keV [1], while the other models give mcold ∼
(10−102) GeV and mhot ∼ few eV , and possible candidates are sterile neutrinos or gravitinos.

The suppression of fluctuations due do WDM particles on scales smaller than their free-
streaming scale, corresponding to a cut-off of the total matter power spectrum on large wave
numbers k, slow down the growth of structure ([11]) and can be described by means of the
transfer function imposing different values of the cut-off parameter. For a given cosmological
model, it is possible to describe how the matter distribution is affected by the free-streaming
length with a relative transfer function provided by the ratio between WDM and CDM power
spectrum:

T (k) =

[

P (k)WDM

P (k)CDM

]1/2

. (18)

The matter power spectrum of the two cosmologies differ only at high wave numbers, as
shown in Fig. 1, where the linear power spectrum today (log10P (k) vs log10k Mpch) for vari-
ous assumption about DM particles [10] is reported. Note the dropping of P (k) at decreasing
k for decreasing mass particle. The case of 1 keV sterile neutrinos is also reported.

While the formation of the first generation of stars is affected by the adopted cosmological
model, large scale structure distributions have similar behaviors, regardless of the model [5].
For this reason, in the following analysis we looked for an analytical description of the matter
power spectrum assuming a ΛCDM model, but introducing a cut-off wave number kmax in
the range [20, 1175] that approximately mimics the drops in the power for WDM models with
different particle properties.
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Figure 1: log10 P (k) vs. log10 k(Mpc) for CDM (solid red line) and WDM particles with
masses 1 keV (blue dashed line), 2 keV (magenta short dashed line), 4 keV (light blue dot-
dashed line) decoupling in equilibrium, and 1 keV sterile neutrinos (green long dashed line).
WDM cuts P (k) on small scales. Plot adapted from [10].
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6 Suppression model: analytical variance function with a vary-

ing kmax

Free-free emission from the ionized medium, with the interplay of cosmic radiative feed-
back of the sources whom reionized the universe, can produce distortions in the CMB pri-
mordial spectrum.
In [9] the effect of this process was explored for two different reionization histories, the filter-
ing and the suppression model, under the assumption of a diffuse, averaged density.
In order to derive the variance of the matter power spectrum we run CAMB, the code for the
anisotropies in the CMB, setting up the cosmological parameters of the suppression model
(see [9]). With reference to the CAMB notation, the cosmological parameters for the sup-
pression model are:

τ = 0.1017 ns = 0.95 σ8 = 0.74

Ωb = 0.0413 dns
d lnk = 0 Amp = 2.018 × 10−9

Ωcdm = 0.1987 r = 0.1 zreion = 10
ΩΛ = 0.76 h = 73 w = −1

(19)

With the CAMB code it is possible to save a file of the evaluated conventionally normal-
ized matter power spectrum for baryons, cold dark matter particles and massive neutrinos
in h/Mpc units, and the transfer function in the synchronous gauge, given a unit primordial
curvature perturbation on superhorizon scales, for each requested redshift and the parameter
that represents the cut-off in the estimate of the variance, i.e. the variable transfer kmax
of the code. We selected a redshift interval between 0 and 30 with an increasing step of 0.1,
and an initial transfer kmax = 1000 (here after kmax).
For the computation of the variance, hence the integration of the power spectrum P (k) as
expressed in Eq. 6, we used the routine D01GAF of the NAG libraries that evaluates the
integral of a function which is specified numerically at four or more points, over the specified
range, using third order finite difference formulae with error estimates, according to a method
by Gill and Miller [6].
For this purpose we implemented a Fortran routine which derives the variance for each red-
shift bin and stores it in a file. At each run we adopted different values for the upper limit of
the integration, which correspond to use different values of the input parameter kmax, with
the NAG routine, such as 20, 50, 100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 850,
900, 1000, to explore the differences in the shape of the curves. What we were looking for
was an analytical relation for the whole set of parameters. With this aim we adopted the case
kmax = 100 as a reference. We found for it an analytical relation with the fitting functions
of the program Igor Pro [12] and searched for a general function able to reproduce the other
curves of variance just depending on the variation of the cut-off parameter.
In all cases, the ratio between the variance’s reference case and the one at a generic cut-off
was best fitted quite well by a linear function of the redshift, for which the intercept and the
slope, say a(k) and b(k), depends only on the chosen kmax, as shown in Fig. 2

To generalize also this behaviour, we tried to find an universal law for these parameters,
able to reproduce the results for any other cut-off’s value. We fitted these two new parametric
quantities, a(k) and b(k), with the same program as before, and we found an extremely good
representation in terms of the function Double Exponential X Offset:
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Figure 2: Linear dependence of the ratio between the variance at a generic cut-off and the
variance of the reference curve with kref = 100.











fit a(k) = a0 + a1exp(a2−k
a3

) + a4exp(a2−k
a5

)

fit b(k) = b0 + b1exp( b2−k
b3

) + b4exp( b2−k
b5

)

, (20)

where the above constants are











































a0 = 0.51385

a1 = 0.85505

a2 = 20.0

a3 = 26.377

a4 = 0.59601

a5 = 235.98











































b0 = −8.9452 × 10−5

b1 = 4.7704 × 10−5

b2 = 20.0

b3 = 0.27323

b4 = 9.8741 × 10−5

b5 = 1034.8

, (21)

so that we could establish the relation:

fit line = fit a(k) + fit b(k)σ2(k). (22)

The same functional form was used to fit the variance for the case kmax = 100, but here
we first divided the redshift interval in two subintervals, zl∈[0; 9] and zh∈[9; 30]:
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Figure 3: Variance for different values of the cut-off parameter kmax with the relative fitting
functions. The curve Reference Fit is the fit to the kmax = 100 curve, while Fit other kmax

are the other curves obtained with analytical functions derived from the reference one as
explained in the text.











fit klow
ref = l0 + l1exp( l2−zl

l3
) + l4exp( l2−zl

l5
)

fit khigh
ref = h0 + h1exp(h2−zh

h3
) + h4exp(h2−zh

h5
)

, (23)

with:











































l0 = 0.27464

l1 = 28.58

l2 = −1.574 × 10−13

l3 = 0.84439

l4 = 8.4836

l5 = 2.9378











































h0 = 0.033389

h1 = 0.24724

h2 = 9.0

h3 = 2.7819

h4 = 0.40036

h5 = 8.9756

(24)

From the concatenation of fit klow
ref and fit khigh

ref we define fit kref . Once derived all the
fundamental quantities, we could determine the fitting relations for all the variances curves
we included in the analysis:

σ2
F it(k) =

fit kref

fit line
. (25)
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The graph of Fig. 3 show the result, and it s possible to see that the analytical variance
function, the dotted curve (Fit others kmax), is reproduced almost exactly compared to the
one derived with CAMB code. So the analytical representation is in good approximation
with the simulation almost in all cases, as displayed in Fig. 4, where are plotted the relative
errors of the variances, with an error at most of 4% except for the two highest cut-off values.
This trend is due to the fact that higher values of kmax correspond to the more distant curves
in respect to the reference one.

Figure 4: Variance relative errors for the fitting functions of the previous plot.

7 Other cosmological models with a constant cut-off parame-

ter

In this section are shown the results obtained when the same analytical technique is ap-
plied to derive the variance given by different cosmologies for a constant value of kmax.
For this aim we run the original version of CAMB, assuming a different set of cosmological
parameters taken from the WMAP Seven Year Cosmological Parameters results2.

In particular we studied the following theoretical models:

1) Λ-CDM + Run + Tens, the Standard Cosmological model with SZ effect, dark energy,
tensors, lensing and running, that parametrizes the variation of the scalar spectral index with
respect to the wave number k.

2) W-CDM, in which the dark energy equation of state is allowed vary, hence w 6= −1.

2
See http://lambda.gsfc.nasa.gov/product/map/dr4/parameters.cfm for details.
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Figure 5: Matter power spectrum at z = 0 for the two different cosmologies and their
alternative set of parameters.

For each cosmology simulations we have four runs, each of them with a characteristic set
of parameters, in agreement within two σ with the WMAP results. The cut-off parameter
was fixed to kmax = 1000. The parameters of each model are:

1a) Λ-CDM:

τ = 0.0872 ns = 1.076 σ8 = 0.804

Ωb = 0.046 dns
d lnk = −0.048 Amp = 1.885 × 10−9

Ωcdm = 0.247 r = 0.1 zreion = 11.4
ΩΛ = 0.707 h = 69.1 w = −1

(26)

1b) Λ-CDM1:

τ = 0.112 ns = 1.01 σ8 = 0.7716

Ωb = 0.0427 dns
d ln k = 0.007 Amp = 2.117 × 10−9

Ωcdm = 0.202 r = 0.01 zreion = 13.229
ΩΛ = 0.7553 h = 71 w = −1

(27)

1c) Λ-CDM2:

τ = 0.104 ns = 1.141 σ8 = 0.7926

Ωb = 0.0509 dns
d ln k = 0.029 Amp = 1.582 × 10−9

Ωcdm = 0.292 r = 0.03 zreion = 13.094
ΩΛ = 0.6571 h = 66 w = −1

(28)
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Figure 6: Matter power spectrum at z = 30 for the two different cosmologies and their
alternative set of parameters.

1d) Λ-CDM3:

τ = 0.0966 ns = 1.05 σ8 = 0.801

Ωb = 0.0487 dns
d lnk = −0.035 Amp = 1.852 × 10−9

Ωcdm = 0.229 r = 0.07 zreion = 11.122
ΩΛ = 0.7223 h = 73 w = −1

(29)

2a) w-CDM:

τ = 0.088 ns = 0.964 σ8 = 0.857

Ωb = 0.044 dns
d ln k = 0 Amp = 2.095 × 10−9

Ωcdm = 0.215 r = 0.1 zreion = 10.5
ΩΛ = 0.741 h = 75 w = −1.12

(30)

2b) w-CDM1:

τ = 0.104 ns = 0.849 σ8 = 0.798

Ωb = 0.022 dns
d ln k = 0 Amp = 1.518 × 10−9

Ωcdm = 0.137 r = 0.05 zreion = 14.486
ΩΛ = 0.841 h = 90 w = −1.55

(31)

13



Figure 7: Variance for the two different cosmologies and their alternative set of parameters,
which result from the simulations, and with the relative fitting functions derived from the
reference curve (see text).

2c) w-CDM2:

τ = 0.073 ns = 0.98 σ8 = 0.81

Ωb = 0.061 dns
d lnk = 0 Amp = 2.782 × 10−9

Ωcdm = 0.297 r = 0.001 zreion = 9.742
ΩΛ = 0.642 h = 61 w = −0.72

(32)

2d) w-CDM3:

τ = 0.097 ns = 0.911 σ8 = 0.97

Ωb = 0.037 dns
d ln k = 0 Amp = 2.282 × 10−9

Ωcdm = 0.252 r = 0.005 zreion = 13.138
ΩΛ = 0.711 h = 78 w = −0.88

(33)

In the whole set of run, even if kmax was fixed to 1000, for the derivation of the variance
we considered in the numerical integration only the data till kmax = 100.
In Fig. 5 and 6 are plotted the matter power spectrum at z = 0 and z = 30, respectively, for
the considered models.
In both cases the trend is very similar; differences between models are more evident at small
scales and tend to be smaller on intermediate scales.

From the plots at different redshift it is evident the variation of the shape of the variance,
particularly on small scales, which is related to the entire set of cosmological parameters and
not only to the amplitude.
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Figure 8: Relative error of the variance for the models analyzed.

We assumed that, for the determination of the σ2, we could take into account the same
reference curve at kmax = 100 we adopted in the case of the suppression model (so in the
modified version of CAMB). The main difference with the previous analysis is that now we
are always studying the limiting case kmax = 100. In this context, for this reason, the coeffi-
cients a(k) and b(k) are constants and independent on k.

To reproduce the right shape of the variance for each model, we must multiply the ref-
erence curve for a correction factor which depends on the specific model, and so here is
not possible to find out a general law. This multiplicative factor let us to shift the curves,
along the y axis, to fit the ones derived with CAMB, and is given below for the various models:

1) Λ-CDM: corr fact = 1.131

2) Λ-CDM1: corr fact = 1.603

3) Λ-CDM2: corr fact = 3.354

4) Λ-CDM3: corr fact = 1.889

5) w-CDM: corr fact = 1.447

6) w-CDM1: corr fact = 0.611

7) w-CDM2: corr fact = 1.705

8) w-CDM3: corr fact = 1.968

To better understand the reason why we need to apply a correction factor to the ratio
between the fitted curves and the reference curve at kmax = 100, we looked for a possible
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Figure 9: Relative error of the variance.

proportionality of the variance with respect to the amplitude of the power spectrum assumed
at each run.

In Fig. 7 we show the variance for the two cosmologies analyzed and for the various set of
parameters, hence 4 curves for each model, with the fitting curves derived from the reference
one (the green dash dotted line).

In Fig. 8 is shown the relative error of the variance’s fitting functions with respect to the
variance’s functions simulated. The bigger is the error, the lower is the redshift, especially
in a redshift range between 0 and ∼ 10, a time interval that corresponds to the reionization
epoch.

8 Cosmological models with variable cut-off parameter

In this section we illustrate the variance’s analytical relations we deduced taking into
account the same cosmological models as the previous section, and allowing the parameter
kmax to vary. The starting point is the reference’s fitting curve of the suppression model at
kmax = 100, and the corresponding fitting curves obtained for the diverse models.
We analyzed the cases: kmax = 200, 400, 600, 800 and 1000.
The relation that approximate the variance of these models depending on the cut-off, with
an error at most 20%, except for the Λ−CDM2 model for which the error is almost 40%, is:











σ2
mod(kref ) = σ2

sup(kref ) × corr fact

σ2
mod(k) = σ2

mod(kref ) 1
fit line(k)

, (34)
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Figure 10: Relative error of the variance.

where kref = 100 is the reference cut-off parameter, σ2
mod(k) and σ2

sup(k) are, respectively,
the variances of the generic and the suppression model and fit line(k) is the fitting function
of Eq. 25.

In Fig. 11 we report the case of the kmax = 200. The variance resulting from the models
(long dashed lines in red and violet for the two kind of models) and from the fitting functions
extrapolated from the approximation explained before (dotted and short dashed lines) are
shown. In Fig. 12 we report the same plot but in the extreme case kmax = 1000, that
represents the worst fitting case, due to the fact that the cut-off is the farthest from the
reference curve, also noticeable by the comparison of the two graphs.

In Fig. 9 and Fig. 10 the relative errors of the variance for these two limiting cases of
the cut-off are shown. As said before, we obtain a more precise result for an assumed cut-off
variance near to the reference one.

8.1 Scaling with perturbation amplitude

For what concern the connection between the scaling factor of the matter power spec-
trum with its relative amplitude and the variance, we investigate a model in which, fixing
the cosmological parameters for different simulations, we varied the perturbation amplitude
in such a way to achieve at z = 0 a σ8 parameter inside the error given by the model itself.
For the test we choose the Λ − CDM model, with running and tensors as usual, where a
run was set with the same parameters of the case 1a, Amp1 = 1.885 × 10−9, while for the
other run was set Amp2 = 2.011 × 10−9 with a resulting σ8 = 0.831. From the ratio of the
amplitudes of the two simulations we have:

Amp1

Amp2
= 0.93735. (35)
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Figure 11: Variance of matter power spectrum and their relative fitting functions.

When integrating the power spectrum for the derivation of the variance, computing the
ratio between them (one for each model) and the mean value, we obtain: 0.93742. So, to a
very good level of approximation, we can affirm that both of them, the matter power spec-
trum and the variance, follow a scaling law proportional to the perturbation amplitude and,
at the same time, they are characterized by a common shape.

9 Conclusion

In this report is described a technique able to derive the variance of the matter power
spectrum for different cosmologies and with different values of the cut-off parameter kmax,
the maximum wave number adopted to integrate the power spectrum for the estimate of the
variance (see Eq. 4). We numerically computed at various redshifts the power spectrum using
the code CAMB for various cosmological models and parameters, and a large value of kmax

and then numerically integrated it up to the desired value of kmax to compute the variance
as function of redshift. Suitable analytical approximations of the numerical results are found.
They allow to reproduce the numerical results at each redshift with an accuracy always better
than few per cent assuming the same cosmological model and with an accuracy better than
about 10 per cent of 20 per cent when a cosmological model different from the reference one is
considered, the larger error referring to larger adopted value of kmax. Of course, the method
can be generalized starting from any cosmological reference model to improve the accuracy
in the desired cases. This results can be easily implemented in any code dedicated to the
CMB spectral distortions to properly compute the amplification of the signal of the free-free
process in the plasma because of matter density contrast. This work links the output of tools
dedicated to anisotropies and inhomogeneities in the universe with tools dedicated to CMB
spectral distortions.
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Figure 12: Variance of matter power spectrum and their relative fitting functions.
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