

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 1

All information contained in this document is property of INAF. All rights reserved.

ACS

The first approach

Internal Report IASF Bologna n 614/2013

Prepared by: Name:

V. Conforti
M. Trifoglio
A. Bulgarelli
F. Gianotti

Signature: Date: 22/01/2013

Reviewed by: Name: Signature: Date:

Approved by: Name: Signature: Date:

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 2

All information contained in this document is property of INAF. All rights reserved.

TABLE OF CONTENTS

DISTRIBUTION LIST .. 4

DOCUMENT HISTORY .. 5

LIST OF ACRONYMS .. 6

APPLICABLE DOCUMENTS ... 6

REFERENCE DOCUMENTS .. 6

1. INTRODUCTION ... 7

2. SCOPE .. 8

3. WHAT IS ACS ... 9

4. Tutorial Requirements ... 10

4.1 The story: 10

5. ACS Learning goals ... 14

6. ACS Setup .. 15

7. Environment setup .. 16

8. Create the Directory Structure .. 17

9. Define the IDL interface ... 18

10. Configuration of the Application ... 20

11. Program implementation ... 22

12. Compile using the Makefile ... 32

13. Create the code for the testing ... 38

14. Test the program .. 42

14.1 Object explorer 45

14.2 Logging Panel 48

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 3

All information contained in this document is property of INAF. All rights reserved.

14.3 The Alarm Panel 49

15. REPOSITORY ... 51

16. DELIVERABLES ... 52

17. CONTACTS ... 53

18. ANNEX A... 54

18.1 AlarmSystemConfiguration.xml 54

18.2 Categories.xml 54

18.3 ReductionDefinition.xml 54

18.4 BACIProperty.xml 54

18.5 BaciPropTest#testDoubleVar.xml 55

18.6 DPSInterface.xml 55

18.7 Manager.xml 56

18.8 TestFF.xml 56

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 4

All information contained in this document is property of INAF. All rights reserved.

DISTRIBUTION LIST

ASTRI mailing list astri@brera.inaf.it

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 5

All information contained in this document is property of INAF. All rights reserved.

DOCUMENT HISTORY

Version Date Modification

1.0 22/01/2013 first version

2.0 24/03/2013 First versione revisioned

Draft 3.0 22/04/2013 Baci properties and alarms

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 6

All information contained in this document is property of INAF. All rights reserved.

LIST OF ACRONYMS

ACS Alma Common Software

IDL Interface Definition Language

XSD XML Schema Definition

XML eXtensible Markup Language

IASFBO Istituto di Astrofisica Spaziale e Fisica Cosmica - Bologna

MASS

BACI BAsic Control Interface

CORBA Common Object Request Broker Architecture

APPLICABLE DOCUMENTS

REFERENCE DOCUMENTS

[RD1] "Progress report for the activities of the WP3130 A software system for the
 ASTRI telescope" - Internal Report ASTRI - Stefano Covino - 26/06/2011

[RD2] http://www.eso.org/~almamgr/AlmaAcs/index.html

[RD3] http://www.omg.org/gettingstarted/omg_idl.htm

[RD4] "Common Object Request Broker Architecture (CORBA) Specification,
 Versione 3.3" - OMG - Novembre 2012

[RD5] http://www.omg.org/spec/CORBA/3.3/

[RD6] http://www.w3schools.com/schema/default.asp

[RD7] "Logging and Archiving" Architecture Document - Klemen Žagar,
 Radostina Georgieva - 30/07/2007-

[RD8] "ACS Alarm System - Software Architecture and How-to manual",
 Alessandro Caproni, Bogdan Jeram, 2010-01-13

[RD9] "Mapping CORBA Data types:"
 http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/cref/member.htm

http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/cref/member.htm

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 7

All information contained in this document is property of INAF. All rights reserved.

1. INTRODUCTION

This tutorial is intended for the developers involved in the implementation tasks of the
MASS. As presented in [RD1] the needs of a framework which allows the development
of the ASTRI software using the distributed programming paradigm, could by satisfied
by the ACS. Thus it is very important for all developer teams involved in the project to
learn how to use this very powerful system.

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 8

All information contained in this document is property of INAF. All rights reserved.

2. SCOPE

The main goal of this document is to share our first experience at IASFBO of software
development using the ACS framework. In the ASTRI project there are many
programmers, each one with his/her own professional background and know how. The
use of a framework could require developers to quickly learn an unfamiliar new
programming paradigm. We hope that sharing our experience will help other
developers to start their work with a tutorial which drives the developer to implement a
first ACS component as exercise. This tutorial is intended for C++ developers but its
discussion of ACS basics should be useful for Java developers as well.

The following chapters explain all the steps of software implementation starting from
the very simple requirements up to and including the testing of the program.

In chapter 3 we discuss the principles of ACS. Chapter 4 and 5 summarizes the
requirements and tutorial goals. The setup of ACS and the development environment
are described in chapters 6 and 7. Chapter 8 shows how to obtain the skeleton of the
application. Chapter 9 defines the interface of this tutorial. Chapter 10 describes how to
configure the application. In chapter 11 we show the implementation files. The
compile, test and execution steps are discussed in chapters 12, 13, 14 respectively.

Furthermore in this tutorial we discuss some common errors that the developer may

encounter. These notes are highlighted with the character: !! .

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 9

All information contained in this document is property of INAF. All rights reserved.

3. WHAT IS ACS

The ALMA Common Software (ACS) provides a software infrastructure common to all
developers of software for the ALMA (Atacama Large Millimeter Array) Project, and
consists of a documented collection of common patterns and components, which
implement those patterns. ACS is based on a distributed component model which is
implemented as CORBA objects in any of the supported programming languages (C++,
Java, Python). The teams responsible for the control system's development use ACS
Components as the basis for controlling high level entities and for the implementation
of devices [RD2].

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 10

All information contained in this document is property of INAF. All rights reserved.

4. Tutorial Requirements

In this chapter is described the application which the developer must implement
following this tutorial.

4.1 The story:

The user wonts an application that is aimed at the simulation of a generic device
management. The device has two interface:

1. The Power;
2. The number of connections;

The power has 3 level, then the admitted values are:

 0: OFF;

 1: normal;

 2: high;

The max number of connections that the device can mangament are 5. When the
device must keep more than 5 connection is not ensured the correctness of
transmissions;

The followings use cases diagram and tables describe the system requirements:

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 11

All information contained in this document is property of INAF. All rights reserved.

Use Case: Power On

Name Value

Preconditions ACS and Container is started up.

Post-conditions The Power value is incremented.

Flow of Events

1. Increment the power value;

2. Notify the new power value;

3. Read the connections value;

4. if there are just open connections

 4.1. Notify the system anomaly

4. end if

Use Case: Power Off

Name Value

Preconditions ACS and Container is started up.

Post-conditions The system is Power Off and All connections is
closed.

Flow of Events

1. Set to 0 the Power value;

2. Set to 0 The connections value;

Use Case: Is Power On ?

Name Value

Preconditions ACS and Container is started up.

Post-conditions Return true if the system is power on, false
otherwise

Flow of Events

1. Read the Power value

2. if the Power value is greater than 0

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 12

All information contained in this document is property of INAF. All rights reserved.

Name Value

 2.1. return TRUE

3. else

 3.1. return FALSE

3. end if

Use Case: Open Connection

Name Value

Preconditions ACS and Container is started up.

Post-conditions The connection value is incremented

Flow of Events

1. Read the current connection value;

2. Increment the current connection value;

3. Update the connection value.

Use Case: Close Connection

Name Value

Preconditions ACS and Container is started up.

Post-conditions the connection value is decremented.

Flow of Events

1. Read the current connection value;

2. Decrement the current connection value;

3. Update the connection value.

Use Case: is Connection Open ?

Name Value

Preconditions ACS and Container is started up.

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 13

All information contained in this document is property of INAF. All rights reserved.

Name Value

Post-conditions Return true if the are open connections, false
otherwise

Flow of Events

1. read the connections value

2. if The connections value is greater than 0

 2.1. Return true

3. else

 3.1. Return false

3. end if

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 14

All information contained in this document is property of INAF. All rights reserved.

5. ACS Learning goals

At the end of this tutorial the developer will be acquire the following know how:

1. The setup of the ACS environment;

2. The definition of IDL Interfaces of a component;

3. The development of a Characteristic Component;

4. The management of BACI properties to monitor a device;

5. The ACS alarm definitions.

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 15

All information contained in this document is property of INAF. All rights reserved.

6. ACS Setup

This tutorial does not explain how to install ACS but aims at helping developers write
their first ACS program very quickly.

A virtual machine with ACS and other useful tools installed is available for the (free)
Oracle Virtual Box, 4.1.22 or later.

This machine is configured with 3 user accounts. For this tutorial only the user ctadev
is needed and its password is 123456.

The programs installed on the virtual machine are the following:

 Eclipse 4.2.1 with plugins that support C++, Python, Git and Svn;

 Java 1.6 update 37;

 Git 1.7;

 SVN 1.6.x;

The virtual machine can be downloaded from this web address:
ftp://astrisw_ftp@ciws.iasfbo.inaf.it/VMS/VboxSL6.3ACS10.2.tar.gz

Other instructions and updates are published on the redmine web site:
http://redmine.iasfbo.inaf.it/projects/astri-acs.

ftp://astrisw_ftp@ciws.iasfbo.inaf.it/VMS/VboxSL6.3ACS10.2.tar.gz

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 16

All information contained in this document is property of INAF. All rights reserved.

7. Environment setup

After the first setup of ACS, the environment for the specific project must be
configured. This operation will be done one time for each project.

For compilation and testing, the developer must create a directory called INTROOT (for
“integration root”). The directory is populated with the results of the build (compile, link
& install) process; the developer never writes directly in this directory. The INTROOT
directory will be used by all developers involved in the project as the space where all
components and clients be integrated.

To create the introot, run the following command:

getTemplateForDirectory INTROOT <path to directory>

Where <path to directory> is the full path (directory and file name) to be
assigned to the INTROOT directory.

Then you can proceed with setting the bash configuration in order to set the
environment variables that ACS uses to point to the INTROOT directory just created.

Open the file .bashrc in the home directory with a text editor and append the following
text:

export INTROOT=$HOME/introot # or the path you have chosen

source $HOME/.acs/.bash_profile.acs

To apply the new setup to the current shell, run the command:

source .bashrc

Now the environment is set up both for the current shell and for the new shells that you
will run in the machine.

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 17

All information contained in this document is property of INAF. All rights reserved.

8. Create the Directory Structure

ACS provides a function to create the directory structure for a module.

Once you have decided where to develop and work with the code for your module, run
the command:

getTemplateForDirectory MODROOT_WS <path to directory>

In this example we have named the module "ACSdps". An example of the created
directory structure is shown in the following figure:

Figure 1 – Directory tree of the project

These directories will host all source and compiled code. The program will be installed
in the INTROOT directory after a successful build.

The purpose of each of these subdirectories will become clearer as the tutorial
proceeds. The INTROOT directory will hold the build artifacts of all components and it
will ensure that ACS will be able to find and manage them at runtime. It is worth noting
that the directories named “idl” usually contain interface definitions that enable each
component to call a method of another component just knowing its interface.

We will take advantage of this feature in the tutorial when we use the Object Explorer,
a generic tool for running any ACS component, to test the component that we develop.

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 18

All information contained in this document is property of INAF. All rights reserved.

9. Define the IDL interface

The IDL interface defines the functionality that a component offers to its clients, which
may be (but are not necessarily) themselves components. The interface is the only
mode for a component to tell clients the methods that it exposes. Likewise a
component knowing the interface of the other component can use the other
component’s methods without knowing how (or even in what programming language)
the component is implemented.

The IDL interface must be written in a file with an .idl or .midl extension and must be
put into the idl folder.

The interface for the component we are developing in this tutorial is:

#ifndef _DPS2_IDL_

#define _DPS2_IDL_

#pragma prefix "alma"

#include <baci.idl>

#include <acscommon.idl>

module DPSModule {

 interface DPSInterface:ACS::CharacteristicComponent {

 /**

 * Power On the system

 *

 * @Action

 */

 void powerOn();

 /**

 * Power off the system

 *

 * @Action

 */

 void powerOff();

 /**

 * check the status of the system power

 *

 * @return 1 if the status is on, 0 otherwise

 *

 * @Action

 */

 //ACS::ROdouble isPowerOn();

 boolean isPowerOn();

 /**

 * open a connection

 *

 * @Action

 */

 void openConnection();

 /**

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 19

All information contained in this document is property of INAF. All rights reserved.

 * close a connection

 *

 * @Action

 */

 void closeConnection();

 /*

 * check the status of the connection

 *

 *

 * @return 1 if there are connections opened , 0 otherwise

 * @Action

 */

 //ACS::ROdouble isConnectionOpen();

 boolean isConnectionOpen();

 // the following properties are use to know the status of the system

 readonly attribute ACS::ROdouble powerStatus; // @ Property

 readonly attribute ACS::ROdouble connectionStatus; // @ Property

 };

};

#endif

In this interface we import the interface definitions for two other components: baci and
acscommon. These components are part of the ACS framework and provide many
features. It is possible to view the services offered by these ACS components by
opening the interface definition files contained in the ACS core (for the ACS version
in this tutorial the absolute path is : /alma/ACS-10.2/ACSSW/idl/{baci.idl and
acscommon.id}).

This interface defines the interfaces and methods that will be made available to clients.
For this tutorial there is only one module with only one interface exposing the
displayMessage method.

The ACS framework allows the interaction between the component and the device
providing the BACI (BAsic Control Interface) properties. When we wont use the BACI
properties then the our interface must be inherit from the "CharacteristicComponent"
ACS class. In this tutorial as defined in the above IDL file we use two BACI properties:

1. powerStatus: it keeps track of power level;
2. connectionStatus: it keeps track of number connections opened;

It is important to notice that the IDL syntax must always be respected. To learn more
on the IDL concepts see [RD3] and [RD4].

When many teams are working for a common goal, the definition of the interfaces is
crucial and needs several iterative discussions between all team groups in order to
agree on a common solution.

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 20

All information contained in this document is property of INAF. All rights reserved.

10. Configuration of the Application

The application’s BACI properties areconfigured via an XML schema and a
corresponding XML instance document. The schema typically defines defaults for the
values, error/alarm limits and monitoring rates for the properties, while the instance
document can override them. These files will also be useful for testing.

The schema file must have an .xsd extension and must be created in the following
path:

..ACSdps/config/CDB/schemas/dpsSchema.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:schemas-cosylab-

com:dpsSchema:1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:schemas-cosylab-com:dpsSchema:1.0"

 xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"

 xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"

 elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:import namespace="urn:schemas-cosylab-com:CDB:1.0"

schemaLocation="CDB.xsd"/>

<xs:import namespace="urn:schemas-cosylab-com:BACI:1.0"

schemaLocation="BACI.xsd"/>

<xs:complexType name="dpsSchema">

 <xs:complexContent>

 <xs:extension base="baci:CharacteristicComponent">

 <xs:sequence>

 <xs:element name="getStatus"

type="baci:ROdouble" />

 <xs:element name="setStatus"

type="baci:ROdouble" />

 </xs:sequence>

 </xs:extension>

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 21

All information contained in this document is property of INAF. All rights reserved.

 </xs:complexContent>

</xs:complexType>

<xs:element name="dpsSchema" type="dpsSchema"/>

</xs:schema>

The contents of this file are the namespaces, the declaration of a new complex type
dpschema which contains complex content which extends a CharacteristicComponent.
The sequence tag encloses the two BACI properties defined in the IDL file.

The writing of this schema must be accurate because it exposes the rules which must
be respected by the other xml files used for testing software.

Further details about the XSD standard can be found in [RD6].

!! A common error is to misspell the names of methods, variables, types (anything

that needs a name) that refer to the same object in different files. For example in this
tutorial we used a property named getStatus. It is crucial to remember that the first
character is lowercase, the S of Status is uppercase and there are no underscore
characters. The use of a consistent convention for clear code object naming helps a lot
to avoid errors which could be very hard to find at compile time.

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 22

All information contained in this document is property of INAF. All rights reserved.

11. Program implementation

In this tutorial the program is implemented using the C++ language, but also Java and
Python are accepted by ACS.

The C++ implementation requires the header file and the implementation file:
ACSdpsImpl.h and ACSdpsImpl.cpp.

The ACSdpsImpl.h must be put in the include folder:

#ifndef ACSdps2Impl_h

#define ACSdps2Impl_h

#endif

#ifndef __cplusplus

#error This is a C++ include file and cannot be used from plain C

#endif

// This Stub is automatically created by ACS. It is needed.

#include "ACSdps2S.h"

// This component is provided by ACS

#include <baciCharacteristicComponentImpl.h>

#include <acsexmplExport.h>

///Includes for each BACI property used in this example

#include <baciROdouble.h>

///Include the smart pointer for properties

#include <baciSmartPropertyPointer.h>

//DevIO allow the wreating and reading of the baci properties.

#include <baciDevIOMem.h>

/*

 *

 * \brief The class DPS is aimed at the interaction with the device

 *

 */

class DPSinterface: public virtual baci::CharacteristicComponentImpl, public virtual

POA_DPSModule::DPSInterface {

public:

 // Constructor

 DPSinterface(const ACE_CString& name, maci::ContainerServices*

containerServices);

 // Destructor

 virtual ~DPSinterface();

 /*------------------- [CORBA interface] ------------------------- */

 /**

 * Power On the system

 *

 * @Action change the value of the powerStatus baci properties

 */

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 23

All information contained in this document is property of INAF. All rights reserved.

 virtual void powerOn();

 /**

 * Power off the system

 *

 * @Action

 */

 virtual void powerOff();

 /**

 * check the status of the dps power

 *

 * @return 1 if the status is on, 0 otherwise

 *

 * @Action

 */

 virtual CORBA::Boolean isPowerOn();

 /**

 * open a connection

 *

 * @Action

 */

 virtual void openConnection();

 /**

 * close a connection

 *

 * @Action

 */

 virtual void closeConnection();

 /*

 * check the status of the connection

 *

 *

 * @return 1 if the connections is open, 0 otherwise

 * @Action

 */

 virtual CORBA::Boolean isConnectionOpen();

 //definition of baci properties pointer

 virtual ACS::ROdouble_ptr powerStatus();

 virtual ACS::ROdouble_ptr connectionStatus();

 baci::SmartPropertyPointer<baci::ROdouble> m_powerStatus_sp;

 baci::SmartPropertyPointer<baci::ROdouble> m_connectionStatus_sp;

};

The name of the class must be the same as the interface defined in the IDL file. This
class must inherit from CharacteristicComponentImpl, as defined in the idl file. Since it
is the implementation file, here must be inserted always the implementations of the
parents components. There is a naming convention that requires that the
implementation of a component has the suffix "Impl". It is always also required that the
implementation class inherits the idl interface which is built as:

POA_module::interface

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 24

All information contained in this document is property of INAF. All rights reserved.

Where module and interface are defined in the idl file.

In our case:

POA_ACSdps::DPSInterface

In the above code is shown how must be declared the BACI properties (getStatus and
setStatus). All the CORBA details are hidden by the ACS that allows the developer to
declares easily the properties and them pointers.

In case of methods which have I/O parameters is needed to pay close attention at the
type syntax parameters. ACS allows the interaction with the etherogeneous component
using the CORBA middleweare. The developer does not interact directly with CORBA
but the interaction between the IDL and the our component is precisely CORBA. Thus
the developer must use the rigth syntax for the IDL type, CORBA type and his
language programming type (C++ for this tutorial) [RD9].

For example if in IDL it is defined a boolean value as return of a function, the developer
shall use the type "boolean" in the IDL interface and the type "CORBA::Boolean" in the
headers function of the C++ source code.

The file ACSdpsImpl.cpp must be put in the src folder.

For what the implementation is concerned:

ifndef __cplusplus

#error This is a C++ include file and cannot be used from plain

C

#endif

#include <ACSdps2Impl.h>

#include <ACSdps2S.h>

#include <maciContainerServices.h>

#include <logging.h>

#include <acsutil.h>

#include <maciACSComponentDefines.h>

using namespace baci;

using namespace std;

MACI_DLL_SUPPORT_FUNCTIONS (DPSinterface)

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 25

All information contained in this document is property of INAF. All rights reserved.

// Implementation of the constructor

DPSinterface::DPSinterface(const ACE_CString& name,

maci::ContainerServices*

containerServices):CharacteristicComponentImpl(name,

containerServices),m_powerStatus_sp(new

ROdouble(name+":powerStatus", getComponent()),this) ,

m_connectionStatus_sp(new ROdouble(name+":connectionStatus",

getComponent()),this) {

 // set the value of the powerStatus and connectionStatus to

0

 ACS::Time timestamp;

 double value = 0.0;

 m_powerStatus_sp->getDevIO()->write(value, timestamp);

 m_connectionStatus_sp->getDevIO()->write(value,

timestamp);

 // creation of log of the constructor

 ACS_TRACE("::DPS::DPS ... constructor ... done.");

}

// Implementation of distructor

DPSinterface::~DPSinterface(){

 // creation of log of the denstructor

 ACS_TRACE("::DPS::DPS ... distructor ... done.");

}

/*

 *

 * POWER ON

 *

 * \brief increment the value of the powerStatus. Log a warning

if the first is power on and there is just an open

connection.

 *

 *

 */

 void DPSinterface::powerOn(){

 ACS_SHORT_LOG((LM_INFO, "Method called: power On "));

 ACS::Time timestamp;

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 26

All information contained in this document is property of INAF. All rights reserved.

 // read powerStatus and connectionStatus

 double powerStatus = m_powerStatus_sp->getDevIO()-

>read(timestamp);

 double connectionStatus = m_connectionStatus_sp-

>getDevIO()->read(timestamp);

 // check closedConnection

 if ((connectionStatus != 0) && (powerStatus == 0)

){

 ACS_SHORT_LOG((LM_INFO, "WARNING: The current

Connection Status is: %f", connectionStatus));

 }

 // increment the value of the powerStatus

 double value = powerStatus + 1.0;

 m_powerStatus_sp->getDevIO()->write(value,

timestamp);

 // read the value just set and log it

 powerStatus = m_powerStatus_sp->getDevIO()-

>read(timestamp);

 ACS_SHORT_LOG((LM_INFO, "The current Power Status is:

%f", powerStatus));

 }

 /*

 *

 * POWER OFF

 *

 * \brief Set the connectionStatus and powerStatus to 0

 *

 *

 */

 void DPSinterface::powerOff(){

 ACS_SHORT_LOG((LM_INFO, "Method called: power Off

"));

 ACS::Time timestamp;

 // shutdown all system

 double value = 0.0;

 m_powerStatus_sp->getDevIO()->write(value,

timestamp);

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 27

All information contained in this document is property of INAF. All rights reserved.

 m_connectionStatus_sp->getDevIO()->write(value,

timestamp);

 // read current status of the system

 // read powerStatus and connectionStatus

 double powerStatus = m_powerStatus_sp->getDevIO()-

>read(timestamp);

 double connectionStatus = m_connectionStatus_sp-

>getDevIO()->read(timestamp);

 ACS_SHORT_LOG((LM_INFO, "System shutdown -> Power

Status: %f ", powerStatus));

 ACS_SHORT_LOG((LM_INFO, "System shutdown ->

Connection Status: %f " , connectionStatus));

 /*

 }

 /*

 *

 * IS POWER ON

 *

 * \return true if the camera server is power on, false

otherwise

 */

 CORBA::Boolean DPSinterface::isPowerOn(){

 ACS_SHORT_LOG((LM_INFO, "Method called: is power on ?

"));

 ACS::Time timestamp;

 double powerStatus = m_powerStatus_sp->getDevIO()-

>read(timestamp);

 bool status = false;

 if (powerStatus > 0){

 status = true;

 }

 return status;

 }

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 28

All information contained in this document is property of INAF. All rights reserved.

 /*

 *

 * OPEN CONNECTION

 *

 * \brief increment the number of connections

 */

 void DPSinterface::openConnection(){

 ACS_SHORT_LOG((LM_INFO, "Method called: open

connection"));

 // read current connection opened

 ACS::Time timestamp;

 double connectionStatus = m_connectionStatus_sp-

>getDevIO()->read(timestamp);

 // increment the number of connections

 connectionStatus++;

 m_connectionStatus_sp->getDevIO()-

>write(connectionStatus, timestamp);

 ACS_SHORT_LOG((LM_INFO, "The current Connection

opended are: %f", connectionStatus));

 }

 /*

 *

 * CLOSE CONNECTION

 *

 * \brief Decrement the number of connections

 */

 void DPSinterface::closeConnection(){

 ACS_SHORT_LOG((LM_INFO, "Method called: close

connection"));

 // read current connection opened

 ACS::Time timestamp;

 double connectionStatus = m_connectionStatus_sp-

>getDevIO()->read(timestamp);

 // increment the number of connections

 connectionStatus--;

 m_connectionStatus_sp->getDevIO()-

>write(connectionStatus, timestamp);

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 29

All information contained in this document is property of INAF. All rights reserved.

 ACS_SHORT_LOG((LM_INFO, "The current Connection

opended are: %f", connectionStatus));

 }

 /*

 *
 * IS CONNECTION OPENED
 *

 * \return true if there are connections opened. False

otherwise

 */

 CORBA::Boolean DPSinterface::isConnectionOpen(){

 ACS_SHORT_LOG((LM_INFO, "Method called: is connection

open ? "));

 ACS::Time timestamp;

 double connectionStatus = m_connectionStatus_sp-

>getDevIO()->read(timestamp);

 bool status = false;

 if (connectionStatus > 0){

 status = true;

 }

 return status;

 }

 /* --------------------- [CORBA interface] --------------

--------*/

 ACS::ROdouble_ptr DPSinterface::powerStatus(){

 if (m_powerStatus_sp == 0){

 return ACS::ROdouble::_nil();

 }

 ACS::ROdouble_var prop =

ACS::ROdouble::_narrow(m_powerStatus_sp->getCORBAReference());

 return prop._retn();

 }

 ACS::ROdouble_ptr DPSinterface::connectionStatus()

 {

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 30

All information contained in this document is property of INAF. All rights reserved.

 if (m_connectionStatus_sp == 0)

 {

 return ACS::ROdouble::_nil();

 }

 ACS::ROdouble_var prop =

ACS::ROdouble::_narrow(m_connectionStatus_sp-

>getCORBAReference());

 return prop._retn();

 }

The methods implemented satisfy the requirements presented in the chapter 4:

1. power On: it increments the powerStatus value and check that that are any
connections opened if it is the first call of powerOn method;

2. power Off: it set the powerStatus and the connectionStatus values to 0;
3. isPowerOn: it returns true if the powerStatus value is greather than 0, false

otherwise;
4. openConnection: it increments the connectionStatus value;
5. closeConnection: it decrements the connectionStatus value;
6. isConnectionOpen: it returns true if the connectionStatus value is greather than

0, false otherwise;

There are also the following methods:

 Constructor: it set the powerStatus and connectionStatus to 0;

 Distructor: it make a log of method called;

 CORBA interfaces methods: they implements the methods to manage the baci
pointers;

In the above implementation it is note that it is used the standard DEVIO of the ACS for
the reading and writing of the baci properties value. In case of the hardware device the
developer must implement the DevIO in order to interface the component with the real
hardware device.

The following instruction for example allow to execute a writing operation:

m_powerStatus_sp->getDevIO()->write(value, timestamp);

The DevIO is used as method of the baci pointer and it has only two method:

1. read;
2. write;

In both cases it is neede to pass the timestamp to keep track when the method is
called.

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 31

All information contained in this document is property of INAF. All rights reserved.

Both the constructor and destructor use an ACS_TRACE macro (which produces a log
message at TRACE level) to keep track of the status of the execution. The parameters
passed to the constructor will be useful to the ACS manager and the container.

In the any methods it is used the ACS logging macro which generates a log with a
simple text message. The syntax is:

ACS_SHORT_LOG((LM_INFO, "text of log "));

For complete syntax and functional details, see [RD7].

The CORBA interface section is where we implement the interface methods (including
any BACI properties) defined in the original IDL file.

!! Care should be taken in the declaration of the constructor to not forget anything just

declared in .h file, to spell all variable names correctly and to apply the correct
operations to BACI properties (e.g., by not attempting to write to a read only property).

!!!! It must be the maxim attention when change a name or a type of a variable

because often it involves tha changment of more than one file. Then check always all
the files (idl, xsd, xml, h, cpp/j/py) . It may seem like a stupid advice but these are the
main causes of error.

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 32

All information contained in this document is property of INAF. All rights reserved.

12. Compile using the Makefile

Now all is ready for program compiling. When ACS created the directory structure, it
also created a standard makefile, located in src folder, that can be adapted to our case.
In the following we show the modified Makefile. Added lines are preceded by a string
like " #ADDED BY HELLO WORLD TUTORIAL ":

#***

"@(#) Id"

Makefile of ACSdps

who when what

Conforti 10/04/13 dps component

ctadev 10/04/13 created

user definable C-compilation flags

#USER_CFLAGS =

additional include and library search paths

#USER_INC =

#ADDED BY HELLO WORLD TUTORIAL

USER_LIB = -lACE \

 -lTAO \

 -lTAO_DsLogAdmin \

 -lTAO_CosNaming \

 -lTAO_IORTable \

 -lTAO_PortableServer \

 -lTAO_Svc_Utils \

 -lTAO_CosTrading \

 -lTAO_CosNotification \

 -lTAO_DynamicAny \

 -lTAO_IFR_Client \

 -lTAO_CosProperty \

 -lacsutil \

 -lcdb \

 -llogging \

 -lacscomponent \

 -lbaci \

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 33

All information contained in this document is property of INAF. All rights reserved.

 -lmaci \

 -lacsErrTypeComponent \

 -lmaciClient \

 -lacserr \

 -lm \

 -lloki \

 -lacstime

MODULE CODE DESCRIPTION:

As a general rule: public file are "cleaned" and "installed"

local (_L) are not "installed".

C programs (public and local)

EXECUTABLES =

EXECUTABLES_L =

<brief description of xxxxx program>

xxxxx_OBJECTS =

xxxxx_LDFLAGS =

xxxxx_LIBS =

special compilation flags for single c sources

#yyyyy_CFLAGS =

Includes (.h) files (public only)

INCLUDES = ACSdps2Impl.h

Libraries (public and local)

LIBRARIES = ACSdps2Impl

LIBRARIES_L =

ACSdps2Impl_OBJECTS = ACSdps2Impl

ACSdps2Impl_LIBS = ACSdps2Stubs maci logging acslogStubs

<brief description of lllll library>

lllll_OBJECTS =

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 34

All information contained in this document is property of INAF. All rights reserved.

Scripts (public and local)

SCRIPTS =

SCRIPTS_L =

TCL scripts (public and local)

TCL_SCRIPTS =

TCL_SCRIPTS_L =

Python stuff (public and local)

PY_SCRIPTS =

PY_SCRIPTS_L =

PY_MODULES =

PY_MODULES_L =

PY_PACKAGES =

PY_PACKAGES_L =

pppppp_MODULES =

<brief description of tttttt tcl-script>

tttttt_OBJECTS =

tttttt_TCLSH =

tttttt_LIBS =

TCL libraries (public and local)

TCL_LIBRARIES =

TCL_LIBRARIES_L =

<brief description of tttlll library>

tttlll_OBJECTS =

Configuration Database Files

CDB_SCHEMAS = dpsSchema

IDL Files and flags

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 35

All information contained in this document is property of INAF. All rights reserved.

IDL_FILES = ACSdps2

TAO_IDLFLAGS =

USER_IDL =

Jarfiles and their directories

JARFILES=

jjj_DIRS=

jjj_EXTRAS=

For expressing dependencies between jarfiles (parallel builds)

jjj_JLIBS=

java sources in Jarfile on/off

DEBUG=

ACS XmlIdl generation on/off

XML_IDL=

Java Component Helper Classes generation on/off

COMPONENT_HELPERS=

Java Entity Classes generation on/off

XSDBIND=

Schema Config files for the above

XSDBIND_INCLUDE=

man pages to be done

MANSECTIONS =

MAN1 =

MAN3 =

MAN5 =

MAN7 =

MAN8 =

local man pages

MANl =

ASCII file to be converted into Framemaker-MIF

ASCII_TO_MIF =

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 36

All information contained in this document is property of INAF. All rights reserved.

other files to be installed

#----------------------------

INSTALL_FILES =

list of all possible C-sources (used to create automatic

dependencies)

CSOURCENAMES = \

 $(foreach exe, $(EXECUTABLES) $(EXECUTABLES_L),

$($(exe)_OBJECTS)) \

 $(foreach rtos, $(RTAI_MODULES) , $($(rtos)_OBJECTS)) \

 $(foreach lib, $(LIBRARIES) $(LIBRARIES_L),

$($(lib)_OBJECTS))

#>>>>> END OF standard rules

INCLUDE STANDARDS

MAKEDIRTMP := $(shell searchFile include/acsMakefile)

ifneq ($(MAKEDIRTMP),\#error\#)

 MAKEDIR := $(MAKEDIRTMP)/include

 include $(MAKEDIR)/acsMakefile

endif

TARGETS

all: do_all

 @echo " . . . 'all' done"

clean : clean_all

 @echo " . . . clean done"

clean_dist : clean_all clean_dist_all

 @echo " . . . clean_dist done"

man : do_man

 @echo " . . . man page(s) done"

install : install_all

 @echo " . . . installation done"

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 37

All information contained in this document is property of INAF. All rights reserved.

#___oOo___

It is noted that additions are required for:

- the implementation files

- the idl files for the interfaces

- the ACS core components used in the implementation (logging, MACI, ...)

- the stubs created by ACS

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 38

All information contained in this document is property of INAF. All rights reserved.

13. Create the code for the testing

This step is required in order to prepare the test that checks both the interfaces and the
implementation of the program. It the test is successful it could be needed to copy all
the files inside the test/CDB folder under the config/CDB folder in order to execute the
configuration of the database (if it is used). The folder involved is test/CDB with the
following structure:

test

 CDB

 Alarms

 Administrative

 AlarmSystemConfiguration

 AlarmSystemConfiguration.xml

 Categories

 Categories.xml

 ReductionDefinitions

 ReductionDefinition.xml

 AlarmDefinitions

 BACIProperty

 BACIProperty.xml

 BACIPropTest#testDoubleVar

 BACIPropTest#testDoubleVar.xml

 DPSInterface

 DPSInterface.xml

 Manager

 Manager.xml

 TestFF

 TestFF.xml

 alma

 TEST_DPS_1

 TEST_DPS_1.xml

 MACI

 Components

 Components.xml

 Containers

 dpsContainer

 dpsContainer.xml

 Managers

 Manager

 Manager.xml

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 39

All information contained in this document is property of INAF. All rights reserved.

In the MACI branch there are the definitions of the component, the container, and the
manager. The alma branch holds the configuration files for the component instances.
The Alarms branch define the configuration of the alarm system (the content of these
files is in Annex A and can be copied less any edit in the tutorial exercise workspace).
All these files are shown below.

TEST_DPS_1.xml

<?xml version="1.0" encoding="UTF-8"?>

<dpsSchema xmlns="urn:schemas-cosylab-com:dpsSchema:1.0"

 xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"

 xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <powerStatus default_value="1.0" units="int"

description="status of power of the camera server"

alarm_low_on="-1.0" alarm_low_off="0.0" alarm_high_on="2.0"

alarm_high_off="1.0" min_delta_trig="0.1" min_step="0.1"

alarm_timer_trig="1.0" />

 <connectionStatus default_value="1.0" units="int"

description="status of power of the camera server"

alarm_low_on="-1.0" alarm_low_off="0.0" alarm_high_on="6.0"

alarm_high_off="5.0" min_delta_trig="0.1" min_step="0.1"

alarm_timer_trig="1.0" />

</dpsSchema>

In the above configuration file is set the baci properties characteristic. Any default
values from the schema may be overridden.

It is note that for the connectionStatus ther is an alarm if the value is less or equal to -1
(alarm_low_on) and this alarm is shut down when the powerStatus value increseas to 0
or greater (alarm_low_off). Similarly the alarm_high_on is 6 and alarm_high_of is 5
because the max number of the opened connections is 5.

Components.xml

<?xml version="1.0" encoding="UTF-8"?>

<Components xmlns="urn:schemas-cosylab-com:Components:1.0"

xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"

xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <_ Name="TEST_DPS_1"

 Code="ACSdps2Impl"

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 40

All information contained in this document is property of INAF. All rights reserved.

 Type="IDL:alma/DPSModule/DPSInterface:1.0"

 ImplLang="cpp"

 Container="dpsContainer" />

</Components>

In this file is specified the Name of the component instance, i.e. TEST_DPS_1 (that is
the same defined under alma folder), the Code is the name of the compiled DLL file
without its extension (ACSdps2Impl), the Type is name of the interface (defined in the
IDL file), the Container is the name of the container in which the component will run
and ImplLang is the programming language used in the implementation of both the
component and the container, in this case, C++.

dpsContainer.xml

<?xml version="1.0" encoding="UTF-8"?>

<Container xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0" xmlns="urn:schemas-cosylab-

com:Container:1.0" xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:log="urn:schemas-cosylab-

com:LoggingConfig:1.0" Timeout="20000" UseIFR="1" ImplLang="cpp">

<Autoload>

 <cdb:_ string="baci"/>

</Autoload>

 <LoggingConfig

 centralizedLogger="Log"

 minLogLevel="2"

 dispatchPacketSize="10"

 immediateDispatchLevel="99">

 </LoggingConfig>

</Container>

Manager.xml

<?xml version="1.0" encoding="utf-8"?>

<Manager xmlns:cdb="urn:schemas-cosylab-com:CDB:1.0"

xmlns="urn:schemas-cosylab-com:Manager:1.0"

xmlns:baci="urn:schemas-cosylab-com:BACI:1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Timeout="50000" xmlns:log="urn:schemas-cosylab-

com:LoggingConfig:1.0" >

 <Startup>

 <cdb:_ string="CLOCK1" />

 <cdb:_ string="TIMER1" />

 <cdb:_ string="MOUNT1" />

 </Startup>

 <ServiceComponents>

 <cdb:_ string="Log" />

 <cdb:_ string="LogFactory" />

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 41

All information contained in this document is property of INAF. All rights reserved.

 <cdb:_

string="NotifyEventChannelFactory" />

 <cdb:_ string="ArchivingChannel"

/>

 <cdb:_ string="LoggingChannel"

/>

 <cdb:_

string="InterfaceRepository" />

 <cdb:_ string="CDB" />

 <cdb:_ string="ACSLogSvc" />

 <cdb:_ string="PDB" />

 <cdb:_

string="AcsAlarmService"/>

 </ServiceComponents>

 <LoggingConfig>

 <log:_ Name="jacorb@Manager"

minLogLevel="5" minLogLevelLocal="4" />

 </LoggingConfig>

</Manager>

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 42

All information contained in this document is property of INAF. All rights reserved.

14. Test the program

Now you are ready to test the program.

First the program must be compiled. From the src folder execute the following
command:

make clean all install

The clean ensures deletion of any result of previously compilations. The all compiles
the program and the install copies all necessary files into the introot directory.

!! The compile step can notice will flag syntax errors, including names of undeclared

or misspelled variables. In the console it checks the first occurrence of an error (the
latter could be caused by the primer).

When the compile success, in order to load the test in ACS, execute the following
command under the test directory:

export ACS_CDB=$PWD

(note: if this step is not executed, ACS will load the ACS test example)

Before running the program it is possible to check the correctness of xml test files
using the following command:

cdbChecker

This tool is useful for find the error in XML files. Check always the correctness of the
words.

If this test succeeds, proceed with the execution of the program. The program can be
started using the GUI or the command line. In this tutorial is used the GUI with the
following command:

acscommandcenter

The GUI is shown in the following figure:

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 43

All information contained in this document is property of INAF. All rights reserved.

Figure 2 - ACS Main Panel

There are 4 areas:

1. Common settings: it is used for start/stop/kill ACS and its services;

2. Containers: it is used to select, start and stop one or more containers;

3. Deployment info: it is used to show the statuses of containers and components
in recognized by the system;

4. Console: it displays every change of status of the ACS (included errors).

When "start" button is selected, a little box appears and it must be waited for the end
of the process:

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 44

All information contained in this document is property of INAF. All rights reserved.

Figure 3 - Starting of ACS

When ACS starts the log panel (in the bottom box) is hidden. It can be extensive
dragging over the mouse.

When the ACS is started, the following Container fields must set:

 Name of the container;

 Programming Language;

Then the container can be started by selecting the green arrow as shown in the
following image:

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 45

All information contained in this document is property of INAF. All rights reserved.

Figure 4 - Starting the Container

Now ACS is up and the Container of the tutorial is running as well. It is the moment to
test the application just created. The ACS provide three useful interfaces:

1. Object explorer;
2. Log Panel;
3. Alarm Panel

14.1 Object explorer

You can view and manipulate the component with the Object Explorer panel by
selecting Tools -> Object explorer to show the following window:

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 46

All information contained in this document is property of INAF. All rights reserved.

Figure 5 - Object Explorer

Click on TEST_DPS_1 to display the methods of the component. This will display this
alert:

Figure 6 - Sticky Reference Error

!! Any errors that appear at this stage need to be resolved before proceeding further.

You should review all source code (especially XML files). The ACS logging client (jlog)
can help you find the errors that occur at runtime. Jlog has many options for filtering on
log fields, so you can suppress, for example, INFO logs in order to highlight ERROR
and WARNING logs.

Click on the central button to continue and show the component methods:

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 47

All information contained in this document is property of INAF. All rights reserved.

Figure 7 - Component Methods

In the above image you can display all methods offered by the component and the two
baci properties defined: powerStatus and connectionsStatus by expanding the
TEST_DPS_1 icon. By selecting the one of the two BACI properties, you can see all its
properties set in the xml file (description, default, value, alarms, ecc.) in the bottom-
right of the following picture:

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 48

All information contained in this document is property of INAF. All rights reserved.

Figure 8 BACI properties

The object explorer is utils also to check the returned value of a function. Indeed in the
rigth bottom of the Figure 8 is display the call methods name, the time of calling and
the return value.

14.2 Logging Panel

The logging panel is open selecting Tool->logging client (graphical). It display all log
generated both the ACS manager and the component just created. An example is
shown in figure 9.

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 49

All information contained in this document is property of INAF. All rights reserved.

Figura 9 - Logging Panel

The logging panel table report the timestamp in which the log is created, the type, the
source and the message. The log is very useful to monitor the component execution
but it is most important do not exceed otherwise will be product too much data with
many difficult to handle.

14.3 The Alarm Panel

The Alarm Panel must be executed by a terminal (is required that ACS is just running)

with the command: alarmPanel. The Figure 10 display the alarmPanel just run.

Figura 10 - Alarm panel

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 50

All information contained in this document is property of INAF. All rights reserved.

When it is created an alarm, for example because the number of the connections
opened is out of the allowed range, the alarm Panel display soon a new row as in the
following figure:

Figura 11 New alarm

If the alarm is finished (for example because the operator has cloned some connection)
then it is notify on the alarm Panel as in the figure 12.

Figura 12 Alarm ended

The operator can delete everytime the ended alarm rows.

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 51

All information contained in this document is property of INAF. All rights reserved.

15. REPOSITORY

When you use the ACS framework, and especially when you’re working in a team you
should maintain yoursource code in a code repository. A solution just proposed in
ASTRI project is GIT:

http://redmine.iasfbo.inaf.it/projects/astri/wiki/ASTRI_sw_git_server_at_IASFBO

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 52

All information contained in this document is property of INAF. All rights reserved.

16. DELIVERABLES

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 53

All information contained in this document is property of INAF. All rights reserved.

17. CONTACTS

Vito Conforti

E-mail: conforti@iasfbo.inaf.it

Phone: +39.051.639.8735

Andrea Bulgarelli

E-mail: bulgarelli@iasfbo.inaf.it

Phone: +39.051.639.8774

Massimo Trifoglio

E-mail: trifoglio@iasfbo.inaf.it

Phone: +39.051.639.8738

Fulvio Gianotti

E-mail: gianotti@iasfbo.inaf.it

Phone: +39.051.639.8706

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 54

All information contained in this document is property of INAF. All rights reserved.

18. ANNEX A

18.1 AlarmSystemConfiguration.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<alarm-system-configuration

 xmlns="urn:schemas-cosylab-com:acsalarm-alarmservice:1.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <configuration-property name="Implementation">CERN</configuration-property>

</alarm-system-configuration>

18.2 Categories.xml

<?xml version="1.0" encoding="UTF-8"?>

<categories

 xmlns="urn:schemas-cosylab-com:acsalarm-categories:1.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <category is-default="true" path="CATEGORY1">

 <description>Test category 1</description>

 <alarms>

 <FaultFamily>BaciPropTest#testDoubleVar</FaultFamily>

 <FaultFamily>BaciPropTest#testPatternVar</FaultFamily>

 <FaultFamily>TestFF</FaultFamily>

 <FaultFamily>AnotherFF</FaultFamily>

 </alarms>

 </category>

</categories>

18.3 ReductionDefinition.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<!--

 - Sample configuration of alarm reduction links.

 -->

<reduction-definitions

 xmlns="urn:schemas-cosylab-com:AcsAlarmSystem:1.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!--

 <links-to-create/>

 <thresholds/>

-->

</reduction-definitions>

18.4 BACIProperty.xml

<?xml version="1.0" encoding="UTF-8"?>

<fault-family name="BACIProperty"

 xmlns="urn:schemas-cosylab-com:acsalarm-fault-family:1.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <alarm-source>ALARM_SYSTEM_SOURCES</alarm-source>

 <help-url>http://tempuri.org</help-url>

 <contact name="Test"/>

 <fault-code value="1">

 <priority>1</priority>

 <problem-description>BACI property</problem-description>

 </fault-code>

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 55

All information contained in this document is property of INAF. All rights reserved.

 <fault-code value="2">

 <priority>1</priority>

 <problem-description>BACI property (LOW)</problem-description>

 </fault-code>

 <fault-code value="3">

 <priority>1</priority>

 <problem-description>BACI property (HIGH)</problem-description>

 </fault-code>

 <fault-member-default>

 </fault-member-default>

</fault-family>

18.5 BaciPropTest#testDoubleVar.xml

<?xml version="1.0" encoding="UTF-8"?>

<fault-family name="BaciPropTest#testDoubleVar"

 xmlns="urn:schemas-cosylab-com:acsalarm-fault-family:1.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <alarm-source>ALARM_SYSTEM_SOURCES</alarm-source>

 <help-url>http://tempuri.org</help-url>

 <contact name="Test"/>

 <fault-code value="1">

 <priority>1</priority>

 <problem-description>BACI property</problem-description>

 </fault-code>

 <fault-code value="2">

 <priority>1</priority>

 <problem-description>BACI property (LOW)</problem-description>

 </fault-code>

 <fault-code value="3">

 <priority>1</priority>

 <problem-description>BACI property (HIGH)</problem-description>

 </fault-code>

 <fault-member-default>

 </fault-member-default>

</fault-family>

18.6 DPSInterface.xml

<?xml version="1.0" encoding="UTF-8"?>

<fault-family name="DPSInterface"

 xmlns="urn:schemas-cosylab-com:acsalarm-fault-family:1.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <alarm-source>ALARM_SYSTEM_SOURCES</alarm-source>

 <help-url>http://tempuri.org</help-url>

 <contact name="Vito" />

 <fault-code value="1">

 <priority>1</priority>

 <problem-description>BACI property with aanother FF, FM</problem-description>

 </fault-code>

 <fault-code value="2">

 <priority>1</priority>

 <problem-description>BACI property with a another FF, FM (LOW)</problem-description>

 </fault-code>

 <fault-code value="3">

 <priority>1</priority>

 <problem-description>BACI property with a another FF, FM (HIGH)</problem-

description>

 </fault-code>

 <fault-member-default>

 </fault-member-default>

</fault-family>

 ASTRI - Astrofisica con Specchi a

 Tecnologia Replicante Italiana

 Code: ASTRI-IR-IASFBO-3700-029 Issue: 3.0 DATE 22/01/2013 Page: 56

All information contained in this document is property of INAF. All rights reserved.

18.7 Manager.xml

<?xml version="1.0" encoding="UTF-8"?>

<fault-family name="Manager" xmlns="urn:schemas-cosylab-com:acsalarm-fault-family:1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <alarm-source>ALARM_SYSTEM_SOURCES</alarm-source>

 <help-url>http://tempuri.org</help-url>

 <contact name="Alessandro Caproni"/>

 <fault-code value="1">

 <priority>3</priority>

 <problem-description>Container crashed</problem-description>

 </fault-code>

 <fault-code value="2">

 <priority>2</priority>

 <problem-description>Filesystem error affecting manager state recovery after

restart.</problem-description>

 </fault-code>

 <!-- Having a default fault member is necessary for alarms on container/client

crashes (FC=1),

 because for these the manager uses FM=<clientName> which cannot be configured

statically.

 -->

 <fault-member-default/>

 <fault-member name="Prevayler"/>

</fault-family>

18.8 TestFF.xml

<?xml version="1.0" encoding="UTF-8"?>

<fault-family name="TestFF"

 xmlns="urn:schemas-cosylab-com:acsalarm-fault-family:1.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <alarm-source>ALARM_SYSTEM_SOURCES</alarm-source>

 <help-url>http://tempuri.org</help-url>

 <contact name="ACS developer"/>

 <fault-code value="1">

 <priority>1</priority>

 <problem-description>BACI property with a new FF, FM</problem-description>

 </fault-code>

 <fault-code value="2">

 <priority>1</priority>

 <problem-description>BACI property with a new FF, FM (LOW)</problem-description>

 </fault-code>

 <fault-code value="3">

 <priority>1</priority>

 <problem-description>BACI property with a new FF, FM (HIGH)</problem-description>

 </fault-code>

 <fault-member-default>

 </fault-member-default>

</fault-family>

