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2 SR 1. The first generation of stars
R must have been formed from
primordial material (H, He, Li)
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massive stars

2. The massive stars produce
metals and pollute the ISM

3. The atmosphere of a low-
mass star preserves memory
of the chemical composition of
the ISM from which it was
formed
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The fact that no Pop lll star could be found generated
some frustration among workers in the field
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What is the limit?

« Observationally:
- 20 mA Call K => [Ca/H]~ -9.4 (so ~ -10 for [Fe/H])

- 20 mA Fell (3859A) => [Fe/H] ~ -7.2

« But accretion by ISM => [Fe/H]~ -8.6 (starting from [Fe/H]~-10)

* Do they exist?

Frebel & Norris, 2011



Gas pressure attempting to
expand the cloud

In order to form a star you need
to cool the gas during the
collapse, to avoid the pressure to
halt the collapse.
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Formation of the First Stars
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® The gas will heat up as a consequence of T... ~2x10° K —
the collapse, either via adiabatic 10° Mg, 20
compression or due to shock heating.

-22
® First Luminous Objects expected at 10

z = 20-30 within halos of masses
~10% Mgun (mini-halos) 10-23

Atomic cooling

® H> cooling drives the temperature down
again until the gas settles into a quasi
hydrostatic state at T ~ 200 K and n ~ 10%
cm—3. Jeans mass: M1~ 103 Msun
(pre-stellar clump).
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® A small hydrostatic proto-stellar core 1s 10

formed first at the center of a Jeans-
unstable cloud. This initial core 10-2 '
subsequently grows through accretion. E C o
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Formation of the First Stars

My T32p~1/2
Mace ~ —— X
i p=1/2

- T3/2

Pop I1I: T'~ 300 K = M ~ 103 M yr—?

e Accretion onto a massive star proceeds
for roughly the Kelvin Helmholtz
timescale,

e tkH is the time it takes a (massive) star

M . T M acctacc ~ 100M o to reach the hydrogen-burning main
sequence.

tace ~ tku ~ 10° yr

e Final masses will typically be smaller, since accretion may be terminated earlier on
due to the negative radiative feedback from the growing protostar.



Formation of low mass stars

“IClark et al. 2011] demonstrated that the
accretion disks that build up around Population
lll stars are strongly susceptible to fragmentation
and that the first stars should therefore form in
clusters rather than in isolation. [...]

After an initial burst, gravitational instability
recurs periodically, forming additional protostars
with masses ranging from ~0.1 to 10 Mo. ”
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e Flat distribution of masses between ~ 0.1 to 10 Mo Greif et al. 2011



Formation of low mass stars

o Zero metallicity = FRAGMENTATION (Clarke et al. 2011, Greif et al. 2011)
o Metallicity > Zcr=

e Cll & Ol fine structure cooling (Bromm & Loeb 2003, e.g.
HE 1327-2326, HE 0107-5240)

Lerit ™ 10— Z(E)

e dust cooling + fragmentation (Schneider et al. 2012,
e.g. SDSS J102915+172927)

Zerie ~ 107 Zg



Searches for extremely metal-poor stars

e Understand the formation of low mass stars in low metallicity gas
¢ Do zero-metal low-mass stars exist?
e \What is the “critical metallicity” for low-mass star formation?

e The chemical composition of the most metal-poor stars gives us
information on the first massive stars

e Lithium and primordial nucleosynthesis predictions

e Lithium abundance / destruction in EMP stars
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EMP stars are exceedingly rare

—— Total MDF
"""" MDF for BHES =16.7

MDF for BHES >16.7

HES MDF, Schorck et al. 2009

“[...] as a rule of thumb, the simple chemical enrichment model of the halo of Hartwick
(1976) suggests that the number of stars should decrease by a factor of ten for each factor
of ten decrease in abundance. [...] In the solar neighbourhood one might expect to find ~ 1

in 200,000 stars with [Fe/H] < — 3.5 dex.”

Frebel & Norris 2011



Prism objective surveys: HK & HES

Prism objective (LR) plus Schmidt telescopes (wide field).

HK: short spectra inspected visually.
HES: long spectra, colors from the spectra.
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' The SkyMapper Facility

¢ 1.3m modified Cassegrain with a

B n R X 5.7 square degree field of view

e Sited at the Australian National
University’s Siding Spring
Observatory
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The pristine survey

e 3.6-meter Canada France
Hawaii Telescope (CFHT);

e MegaCam, 1 deg? FoV

¢ 1000 deg?2 covered as of
Sept. 2016
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Turn Off Primordial Stars (TOPQOS):

e DR12: 14,055 deg?,

photometry for 933 2
million unique objects 3
852000 spectra of ¢
stars 2

e 180000 SDSS R=2000
spectra (potentially TO
stars, photometry
available) analyzed
automatically

Flux

e Final selection by
visual inspection
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Turn Off Primordial Stars
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Metallicity SDSS
Caffau et al. 2011

The TOPoS collaboration: Elisabetta Caffau, Piercarlo Bonifacio, Patrick Francois, Francois Spite,
Monique Spite, Bertrand Plez, Roger Cayrel, Norbert Christlieb, Paul Clark, Stimon Glover,

Ralf Klessen, Andreas Koch, Hans-Gunter Ludwig, Lorenzo Monaco, Luca Sbordone, Matthias Steffen,
Simone Zaggia

Other collaborators: Andy Gallagher, Stefania Salvadori, Alessando Chieffi, Marco Limongi, Paolo Molaro,
Lyudmila Mashonkina, Fran,cois Hammer, Vanessa Hill, Carlo Abate, David Aguado



Extremely metal-poor stars are very rare objects

The new discoveries are dominated by large surveys for pre-selection
LAMOST

SDSS + HR followups (e.g. Aguado et al. 2016, 2017)

The AEGIS survey is a southern extension of SDSS/SEGUE using 2dF+AAO on the AAT (Yoon
et al. 2018).

The r-process alliance has selected stars from RAVE to search for r-enhanced stars at higher
resolution as well as from Schlaufman & Casey (2017) for follow-up at low resolution (Placco et
al. 2018)

Kielty et al. (2018) were able to identify CEMP stars from IR APOGEE spectra, metallicity ~ -2.0

The HERMES multi-object spectrograph on the AAT+2dF deploys ~ 400 fibers on the 2deg FoV.
The GALAH survey (De Silva et al. 2015) aims at gathering spectra for ~1 million stars, down to
V=14,



Ultra-faint dwarf galaxies MDF
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“[...] In order to account for all of the ultra
faint galaxies known within 30 kpc of the
Galaxy [...] this implies the existence of at
least 1000 satellite galaxies within 300 kpc

of the Milky Way.”

Kelley et al. 2018, arXiv:1811.12413
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Ultra-faint dwarf galaxies are favorable
environments to search for EMP stars

FORS2/VLT, M2FS/Magellan
data for Grusll UFD



The TOPOS contribution

Table 1 The eight most Fe-poor stars Frebel & Norris, 2015, ARAA, 53, 631
V;
Object RA (2000) Dec Tw | logg | [Fe/H] | [C/Fe] | (kms™') References
SM 031367082 03 13004 —67 08 39.3 5,125 2.30 <—7.30| >+4.90 ND Keller eral. (2014)
HE 13272326 13 30 06.0 —23 41 49.7 6,180 3.70 —5.66 +4.26 64 Frebel et al. (2005),
Aoki et al. (2006)

HE 01075240 0109292 5224342 5,100 2.20 —35.39 +3.70 44 Christlieb et al. (2002, 2004
SD 1035406417 5 } - 26 . _

HE 0557-4840 0558 39.3 —483956.8 | 4,900 2.20 -4.81 +1.65 212 Norris et al. (2007

D 1742425312 1742 59.7 +253135.9 34 K $ 3. 20¢ Bonifacio et al. (2015)
sD 1029417297 1029152 +17 29 28.0 4.7 +0).93 3¢ Caffau eral. (20112, 2012)
HE 0233-0343 0236 29.7 -033006.0 | 6,100 3.40 ~4.68 +3.46 64 Hansen et al. (2014)

SDSS J092912.32+023817.0 [Fe/H]=-4.97; Caffau et al. 2016 (TOPOS lll)

e SDSS J0023+0307: [Fe/H]< -6.6; Aguado et al. (2018), Francois et al. 2018, Frebel et al. 2018
* Pristine 221.8781+9.7844 (Starkenburg et al. 2018) [Fe/H]=-4.66, [C/Fe] < 1.76

e SDSS J131326.89-001941.4, [Fe/H]=-4.3/-5.0 (Allende Prieto et al. 2015, Frebel et al. 2015)
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The TOPOS contribution
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TOPoS project:

e 65 TO stars of which 49
with [Fe/H]< -3 (Francois et
al. 2018, TOPoS V)

e 6 TO stars with [Fe/H] < -4
(Caffau et al. 2016,
Bonifacio et al. 2018 -
TOPoS IILIV)

Note the low
alpha/Fe stars



a Raw MDFs

b Raw MDFs
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Frebel & Norris, 2015
(from Yong et al. 201 3)

The Fe metallicity distribution function based on the high-resolution, high-S/N homogencous abundance
analysis by Yong ct al. (2013a). The gencralized histograms have been gencrated using a Gaussian kernel

having & = 0.30 dex, and these are presented on linear (/eft) and logarithmic (rzght) scales. Green and gray
color coding is used to present the contribution of C-rich and C-normal stars, respectively, for which
mecasurcment was possible. Pancls # and b refer to the raw data, and pancls ¢ and d show the same data

corrected for completeness for the range —4.0 < [Fe/H] < —3.0, as described by Yong ctal. (2013b). The
dashed line shows the metallicity distributon function (MDF), which was based on Hamburg/ESO survey
data by Schérck ct al. (2009). Reproduced with permission of D. Yong, privatc communication.



Beers & Christlieb (2005)

Carbon-enhanced metal-poor stars
CEMP C/Fe] > +1.0
CEMP-r C/Fe] > +1.0 and [Eu/Fe] > +1.0
CEMP-s C/Fe] > +1.0, [Ba/Fe] > +1.0, and [Ba/Eu] > +0.5
CEMP-1/s C/Fe] > +1.0 and 0.0 < [Ba/Eu] < +0.5
CEMP-no C/Fe] > +1.0 and [Ba/Fe] < O

According to the theory of
Bromm & Loeb (2003) a minimal
quantity of C and O is necessary
to form low mass stars

Transition discriminant

Frebel et al. 2007
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Normalised Flux

At last, no
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Dtrans

SDSS J102915+172927: the Caffau star
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According to the
theory of Bromm &
Loeb (2003) a minimal
quantity of C and O is
necessary to form low
mass stars

But we have found
a star in the
forbidden zone

See also
Starkenburg et al.
2018 (Pristine 1V)

Caffau et al. 2011, Nature, 477, 67



e There are various definitions of carbon-enhanced stars,
and they refer to physically very different objects:

* evolved stars in which C has been synthesized by
nuclear reactions in the star itself (AGB “carbon-stars”)

* binary system in which the more massive star transfers
material processed by nuclear reactions (C-rich) to the
companion. In this class are the so-called “CH stars”
and some of the CEMP stars.

e stars formed from gas in which the ratio C/Fe is
several order of magnitudes higher than the solar ratio.
Some of the CEMP stars (?)
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The high C-band is dominantly populated by CEMP-s
stars, that are thought to be composed by binary
systems (Lucatello et al. 2005, Starkenburg et al. 2014,

Hansen et al. 2016b), claimed percentages vary from
82% to 100%.

On the other hand CEMP-no stars seem to have a
fraction of binaries compatible with that in carbon-
normal stars (Hansen et al. 2016a)

So: High-C —> mass transfer and
Low-C —> formed in C-rich cloud ?

10

six new stars
O Star from a previous paper

_Two carbon bands

In a A(C) vs [Fe/H] plot (Spite et al.
2013), CEMP stars concentrate in

- | two bands. Bonifacio et al. (2015,
“ of® | TOPoS ll): a fairly clear separation
° between the bands and, most
| importantly, ALL low C-band stars
are CEMP-no.
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Binarity among

CEMP-s S x
1 e CEMP-no w
S binary

O  non-binary

Strikingly HE 0107-5240 is found to be a
binary and Arentsen et al. claim its
abundance pattern can be explained by
mass transfer from a (low-mass) AGB
companion

CEMP-no stars

Arentsen et al. (2018) find a binary
fraction among CEMP-no stars (32%)
lower than among CEMP-s but higher
than what found by Hansen et al. (201643,
16%)

HE 0107-5240
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Normalised Flux

Binarity

« SDSS J092912.32+023817.0 ( [Fe/H]=-4.97 ) is a multiple system (2 or 3 peaks in the
CCF), CEMP star, unclear if CEMP-no.
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What have we learnt ?

The hypothesis that stars found in the lower C-band
are always CEMP-no has so-far not been contradicted



Origin of the C-enhancement

No universally accepted hypothesis currently exists to explain the origins of the C-rich stars with [Fe/H] < -3.0
(which are almost exclusively CEMP-no stars). Different models.

Mixing and fallback

Owing to a low explosion energy (faint SN, <10%'erg), only the outer layers of the exploding star containing
principally lighter elements, made in the earlier phases of stellar evolution, are ultimately ejected.

The innermost layers containing iron-peak elements, and especially iron from the last burning stage, remain
close to the core and fall back onto the newly created black hole.

Only a small fraction is then ejected, resulting in little or even no enrichment in these elements.

Generally good fits can be obtained with the yields of mixing and fallback core collapse supernovae.

Ratio | evel (dex Population 1l properties References
Mixing and fallback, Z = 0, supernovae* Umeda & Nomoto (2003)
Rotating, Z ~ 0, massive stars Meynet et al. (2006)

[C/IN] <0.0 Rotating, Z ~ (, massivc stars Mecynct ct al. (2006)

[Na, Mg, Al/Fe] ~1.0 Mixing and fallback, Z = 0, supernovae* Umeda & Nomoto (2003)
Rotating, Z ~ 0, massive stars Meynet et al. (20006)

l/Fe] ~0.4 Supernovae® Woosley & Weaver (1995)

[Ca/Fe] >1.0 PISNe signature Heger & Woosley (2002)

[Zn/Fe] >0.5 High explosion energy supernovae® Umeda & Nomoto (2002)

Frebel & Norris 2015
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TOPoS VI: Kinematics - TBD

Andreas Koch and Simone Zaggia

S0SSJ1029+1729 SOSSJ1742+2531
RMiN= 7.95420.767 RMAX= 8.68020.133 ZMAX= 2.009=0.298 RMIN= 227125336 RMAX=561.37422043.547 INMAX=49265+202.513
ECC= 0.04410.017 ENE= 0.024:0.000 ECC= 0.87820.098 ENE= 0.11020.437
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TOPoS VI: Kinematics - TBD

Andreas Koch and Simone Zaggia
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a Raw MDFs b Raw MDFs
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Figure 5

The Fe metallicity distributon functon based on the high-resolution, high-S/N homogencous abundance

analysis by Yong ct al. (2013a). The generalized histograms have been generated using a Gaussian kernel YO ng et a.l . 20 I 3 >

having & = 0.30 dex, and these are presented on linear (/eft) and logarithmic (rzght) scales. Green and gray .

color coding is used to present the contribution of C-rich and C-normal stars, respectively, for which F rebel & N orris, 20 I 5
mecasurcment was possible. Pancls @ and b refer to the raw data, and pancls ¢ and d show the same data

corrected for completeness for the range —4.0 < [Fe/H] < —3.0, as described by Yong ctal. (2013b). The
dashed line shows the metallicity distribution function (MDF), which was based on Hamburg/ESO survey

data by Schérck ctal. (2009). Reproduced with permission of D. Yong, privatc communication.



The lithium content of metal-poor stars

—j The “cosmological
Lithium problem”

Spite et al. 2012
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A(Li)

The lithium content of metal-poor stars
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The lithium content of metal-poor stars
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New LI measurements in EMP stars
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- There are stars on the Spite plateau at least down to [Fe/H]=-4.0
- Even at [Fe/H]<-5.2 Li is measurable

- Below [Fe/H]=-3.5 stars at Teff< 6000K are Li -depleted

- The Teff for which lithium destruction in the stellar atmospheres
becomes important increases as metallicity decreases (?)

Bonifacio et al. 2018, TOPoS IV



Searches for extremely metal-poor stars

e Understand the formation of low mass stars in low metallicity gas
¢ Do zero-metal low-mass stars exist?
e \What is the “critical metallicity” for low-mass star formation?

e The chemical composition of the most metal-poor stars gives us
information on the first massive stars

e Lithium and primordial nucleosynthesis predictions

e Lithium abundance / destruction in EMP stars



Thank you



