

Reconstructing the evolution of galaxies with cosmic time

Lucia Pozzetti (uff. 4W7) &

Olga Cucciati (uff 3W4)

@ INAF-OAS

@DIFA: Cimatti, Moresco

@OAS: E. Zucca, M. Bolzonella

Reconstructing the evolution of galaxies with cosmic time

Galaxy Spectroscopic Samples as time machines:

- Lookback time studies;
- Archeological studies;
- Forecasts for future survey.

Key probes to investigate galaxy formation and evolution

1985 - Film by Robert Zemecki

Inferring the physical properties and star formation histories of galaxies through cosmic time

The role of the environment in galaxy evolution

Galaxies that live in dense environments (clusters, groups, filaments ...) are affected by physical processes that can alter their properties (quench star-formation, change

shape etc)

Which is the epoch when the role of the environment was more effective?

Past, Present, public and future projects

zCOSMOS (20k spectra @ z<1)

GMASS (~200 spectra @ z<1 & z>2)

VIPERS (100k spectra @ 0.5<z<1.2)

VUDS (10k spectra @ z>2)

VANDELS (2k spectra @ 1<z4)

Lega-C (spectra z~1)

MUSE + MANGA (IFU)

WEAVE+STePs

(high-R spectra @ 0.3<z<0.8)

MOONS (near-IR spectra 0.7<z<2)

Euclid (Halpha emitters 0.9<z<2.3)

Dynamical masses and scaling relation of passive galaxies

Background: <u>evolution of scaling relations</u> is poorly constrained at z>1 (e.g. van de Sande+14; Belli+14).

ETGs and massive SFGs may lie on the same FP (Bezanson+15)

Aims: derive the evolution of scaling relations of dispersion-dominated galaxies (e.g. <u>\sigma vel-M*, Mdyn-M*, FP, mass-FP, size-mass, density-mass</u>), constraints on <u>M/L and IMF</u>, comparison of ETGs and SFGs, and with models of massive galaxy formation.

How: <u>high S/N</u> and moderate resolution of **VANDELS** spectra to <u>measure σ vel and estimate dynamical masses of individual and stacked spectra</u>. <u>HST imaging</u> will be used for <u>surface brightness profiles</u> and structural parameters.

Tools: PPXF, STARLIGHT, GALFIT

People @ INAF-OABo: L. Pozzetti, M. Bolzonella, O. Cucciati

@ DIFA A. Cimatti, M. Moresco, M. Talia

Spectral fitting decomposition

Aim: Derive *physical properties (age, Z, dust, U, ...) and SFHs* as a function of cosmic time, galaxy type, environment

-

Surveys: VANDELS (1<z<4) + simulations WEAVE

(0.3<z<0.8) + MOONS (z>0.8)

Tools: STARLIGHT, PPXF, CLOUDY

@ DIFA A. Cimatti, M. Moresco, M. Talia

Cosmology with passive galaxies in VANDELS

0.4 Ω_M

0.2

Background: <u>H(z)</u> poor constraint at z>1

Aims: possibility of setting <u>cosmological</u> <u>contraints</u> from the spectroscopic evolution (studying absorption and continuum indices) of passive galaxies

How: using <u>D4000 and UV indices and</u> <u>breaks</u> as cosmic chronometers (Moresco +2012, Moresco 2015, Moresco+2016).

Surveys & Tools:VANDELS spectra, MCMC

From ~30 to ~300 Massive (>10^{10.5} Msun) Passive galaxies @ 1.5<z<2.5

People involved @ DIFA , M.

Moresco, A. Cimatti

@ INAF-OASBo: L. Pozzetti

Density field reconstruction and identification of protoclusters in VANDELS (z>2)

Background: At z>2 structures are still in formation, and it is easier to catch environmental processes in the moment they are happening.

Aims: The aim of this project is <u>characterize</u> <u>environment</u> and to perform a systematic <u>search of candidate proto-clusters</u> in **VANDELS**

How: Using photometric and spectroscopic redshifts to derive environment, even at z>2. The <u>Voronoi tessellation</u> is effective for structures in formation, which might have different shapes

Tools: An IDL tool is currently available for density field derivation and detection of proto-

Example: the proto-supercluster Hyperion in VUDS (z=2.45)

cluster candidates

People involved @ INAF-OABo: O. Cucciati, M. Bolzonella, L. Pozzetti

@ DIFA A. Cimatti

HIZELS

$H\alpha$ Luminosity Function

in different environments

Background: The H α emission is a tracer of star formation activity. The study of the H α Luminosity Function (LF) allows us to derive the total Cosmic Star Formation rate Density at any epoch.

Aims: Study of the H α LF in different environments at z>2, to verify the enhancement of SF activity in high density regions. This analysis will be also used for the forecasts for the **Euclid** surveys.

How: Use of catalogues of H α emitters (e.g. **HiZELS**) + environment characterization.

Tools: Codes already available for the derive the environment and for the computation of the LF

Other projects based on environment in other surveys are also available

People @ INAF-OABo: Cucciati, Pozzetti, Zucca

@ DIFA Cimatti