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SUMMARY - In-flight measurements of the shape of the antenna main beams
of the PLANCK instruments is a crucial input to the data analysis pipeline. We
study the main beam reconstruction achievable through the observation of exter-
nal planets using a flight simulator to model the observations of the Solar System
bodies. We restrict our analysis to the 30 GHz LFI channel but the method can
be easily extended to higher frequency channels. By considering in this prelimi-
nary study a bivariate Gaussian beam shape, we show that it is possible to fit the
time order data from the external planets (mainly Jupiter and Saturn) to obtain
an accurate, simple and fast reconstruction in flight of the main beam parameters
independently of the calibration accuracy. We demonstrate that it is possible to
combine a very accurate in-flight calibration by using the CMB dipole signature
and its modulation introduced by the spacecraft motion and the good accuracy
in the recovery of the maximum signal at the planet transit for a measurement of
the intrinsic planet temperatures at millimetric wavelengths with an accuracy at
% level. This work is based on PLANCK-LFT activities.

1 Introduction

The PLANCK Surveyor! is the ESA space mission devoted to the study of the Cosmic Mi-
crowave Background. PLANCK will have an impact on a number of scientific issues, such as
the physics of the early universe, structure formation theory and cosmological parameters
determination (Bersanelli et al. 1996). In order to reach the necessary level of sensitivity it
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is important to understand systematics and to keep them under control. In this work we will
focus on the behavior of the PLANCK Low Frequency Instrument (LFI, Mandolesi et al. 1998)
antenna patterns. For simplicity, we will restrict our analysis to the 30 GHz LFI channel but
the method we present here can be easily extended to higher frequency channels.

The beam pattern is affected by optical distortions, which depend on the telescope design
and on the arrangement of the various feed horns in the focal plane. These effects degrade
both angular resolution and sensitivity (e.g., Mandolesi et al. 2000a,b). Therefore, accurate
measurement of the beam pattern is a crucial input to the data analysis pipeline.

Due to their small angular size external planets produce large signals only when seen in
the main beam. As such, they represent a unique possibility to recover directly from the data
the in-flight behavior of the main beam. This point was already addressed, in the framework
of the PLANCK mission, by Bersanelli et al. 1997 for the simple case of a Gaussian symmetric
antenna response. We extend here this analysis to quantify our ability to reconstruct a more
realistic, asymmetric beam pattern.

The plan of this work is as follows. In Sect. 2 we describe our main tools and assumptions.
In Sect. 3 we discuss the quality of the main beam reconstruction. In Sect. 4 we summarize
our findings and draw our conclusions.

2 Method

In order to attack the problem of the in-flight main beam reconstruction, we have to: (i)
describe the PLANCK orbit and scanning strategy; (i7) quantify the antenna response; (i)
exploit the planet’s mm emission and positions; (iv) simulate the PLANCK observations of
the external planets (basically Jupiter and Saturn). Here we briefly discuss these points
separately.

2.1 PLANCK orbit and scanning strategy

The selected orbit for the PLANCK satellite is a Lissajous orbit around the Lagrangian point
L2 of the Sun-Earth system (e.g., Bersanelli et al. 1996). In the nominal operation scheme
the spacecraft spins at 1 r.p.m. around an axis kept parallel to the ecliptic plane. Every
hour the spin axis is moved by 2.5’ maintaining its anti-solar direction. The telescope optical
axis is at an angle a from the spin axis direction. The spin axis might precede about the
anti-solar direction, with a period of about six months and an amplitude of about 10°. This
spacecraft movement is of course over imposed to the Lissajous orbit and to the spin axis
hourly shift. In this work we consider for simplicity only the case a = 90° with no precessions,
but it is evident that the quality of the main beam reconstruction does not depend on the
assumed scanning strategy. We make use of the PLANCK flight simulator described in detail
by Burigana et al. 1997, 1998 and Maino et al. 1999 properly modified to model the PLANCK
observations of the Solar System bodies and the spacecraft motion (see, e.g., Bersanelli et al.
1997).

For what follows, it is convenient to introduce a telescope “reference frame” (hereafter
tf) {zp,yr, 2r} with the zp axis coincident with the direction of the telescope line of sight
(the p direction, say) and with the 27 — yr plane identifying the telescope field of view plane
(we choose to orient Zp towards the intersection of the z7 — yr plane with the spin axis §
or, in the case a = 90°, &7 || §). For the considered scanning strategy the spin axis and the
telescope directions (§ and p, respectively) are easily derived given the observation time, the
spinning frequency and the boresight angle a. So it is always possible to pass from a chosen
celestial rf to the telescope rf (and viceversa) by a suitable Eulerian rotation of the considered
rf.



2.2 Antenna angular pattern

The PLANCK High Frequency Instrument (HFI, Puget et al. 1998) is located at the center
of the focal plane. The LFI feed horns surround HFT and are then substantially off-axis. For
instance, with a telescope of 1.5 m class, the 30 GHz beams are at about ~ 5° from p. So,
it is convenient to define a beam rf {zy, yp, 25} with the z, axis coincident with beam axis
b and with the zp — yp plane slightly tilted with respect to the telescope field of view plane
(we keep the convention of obtaining the beam rf from the telescope rf through a rotation
of the telescope rf about an axis hortogonal to the plane identified by p and b by the angle
necessary to transport p to 13)

As we know the position of each feed horn in the focal plane, we can always pass from the
telescope rf to the beam rf and viceversa. In fact, the flight simulator determines for every
time step the orientations in the sky of the telescope and beam reference frames, to compute
the antenna response for a given line of sight.

2.2.1 Main beam

Recent improvements on the PLANCK optical design based on aplanatic solutions (Mandolesi
et al. 2000b) show that the main beams are roughly elliptical, with an ellipticity ratio r < 1.4
(Alcatel, private reference, PL-AS-TN-022). Therefore, we approximate the antenna pattern
as an off-axis bivariate Gaussian beam. For simplicity, we will consider the bivariate Gaussian
beam projected onto the field of view plane (i.e. we will consider this beam representation on
the zp — yr plane, and not on the z; — 1y, beam plane). To be accurate one has to say that
if the true beam shape is elliptical in the z, — y; plane, it gets distorted by the projection on
the 1 — yr plane. However, since the off-axis angle even for the 30 GHz beam is small, this
distortion is negligible and, if anything, does not change the elliptical nature of the beam
response. In addition, a realistic main beam distortion implies a deviation from the elliptical
shape larger than that introduced by this projection. So, let (27, y7) identify the projection
of the beam centre unit vector onto the x7 —yr plane. Let € be the angle between the zr-axis
and the principal axis of the bivariate Gaussian. The (normalized to the maximum) beam
response can be then expressed as:

e[ 38+ ()]

where Ay = (zp — z})cose + (yr — yj)sine, A_ = —(zr — =% )sine + (yr — y})cose, and o2
and o2 are the bivariate’s beam dispersions along the ellipse principal axis rotatated by an
angle € with respect to the xr axis in the 7 — yr plane. It is then convenient to define the
beam “sigma” o = ,/o{o_ and the ellipticity ratio r = oy /o_.

2.3 Planet’s mm emissions and positions

Several authors reported measurements of the planets brightness temperature at millimeter
wavelengths with typical uncertainties of 3+-5% (see, e.g., Bersanelli et al. 1997 and references
therein). The quite large uncertainties associated with these values prevents one from using
planets for accurate temperature calibration of the PLANCK time order data. This will be
done, to better than a 1%, by using the diffuse signature of the CMB dipole anisotropy
(Bersanelli et al. 1997). However, for the purpose of beam reconstruction it is not necessary
to have a detailed knowledge of the planet emission. It only matters that the source is stable
and sufficiently bright to be detectable even when the source is far from the beam axis. This
requirement is crucial to sample the antenna beam response at different angles. For this
reason we will consider here only Jupiter and Saturn, which are the brightest of the external



planets. On the basis of the published data, we will assume hereafter that Jupiter and Saturn
have, at 30 GHz, brightness temperatures of Tj(z?,) =152 K and Ts(gz = 133 K, respectively.

2.4 PLANCK observations of the external planets

We use the PLANCK flight simulator in order to model the transit of the planets in the
PLANCK field of view. In particular, Jupiter and Saturn will be observed twice in about a
year. The solid angle of the external planets as seen by PLANCK is very small compared to
the beam size. Thus, the PLANCK observations of the Jupiter (Saturn) will yield

TOr(R/d)? J[(t) — b]
Jix J(3) dQ2 '

In this equation T3pgp, is the observed Jupiter (Saturn) brightness temperatures @ 30 GHz;
T®) | R and d represent the intrinsic Jupiter (Saturn) brightness temperature, radius and
distance, respectively; J is the antenna response and 4(t) identifies the angular position of
the planet as seen by PLANCK, the time dependence being fixed by the scanning strategy.

Taoeu:[¥(t)] =~ (2)

3 In-flight recovery of the main beam pattern

The PLANCK Time Ordered Data (TOD) are affected by instrumental noise. Therefore, our
capability to recover the main beam pattern rests on the possibility to clearly detect a bright
source (e.g., Jupiter), even when significantly far from the beam axis. A proper description
of the PLANCK-LFI instrumental noise should in principle include a 1/f contribution (see,
e.g., Bersanelli et al. 1996, Seiffert et al. 1997). The knee-frequency of the 1/f noise is
expected to be comparable with the spinning frequency. However, it has been shown that
destriping algorithms can very efficiently remove this low frequency noise component even
under more pessimistic conditions (see, e.g., Maino et al. 1999 and references therein) and
return a TOD that we will assume, accordingly with the goals of this work, white noise
dominated. So, in what follows we will model the TOD noise component as pure white noise,
with the PLANCK goal sensitivities discussed by Bersanelli et al. 1999 (private reference,
PrLaNck Low Frequency Instrument, Instrument Science Verification Review, October 1999,
LFI Design Report). In principle, the signal fluctuations introduced by CMB and foreground
anisotropies behave as a noise source in this context. However, since they can be accurately
subtracted from the TOD by using the PLANCK final maps, we neglect them in what follows.
In the simulations presented in Sect. 3.1, we oversample each scan circle every ~ 5 (i.e.
roughly 6 points per FWHM @ 30G H z) and shift the spin axis by 5 every two hours. After
simulating the Jupiter and Saturn transits we extract from the time ordered scans a few
(~ 100) chunks comprising the source transit. Since the source is pointlike, these chunks
give, when displayed one after the other and having taken into account the small variations
of planet distance in the different samplings, a 2-D plot of the beam profile, ~ 8.3° x 8.3°
wide.

In Fig. 1 we show the expected signal from Jupiter as seen along the scan circle which
crosses the source at the maximum (top panel) and as seen along an arc orthogonal to this
circle (bottom panel). The signal to noise can be improved, wrt the case of a single receiver
and transit, by considering that two LFI receivers are coupled to the same optical beam, that
there are two 30 GHz beams with the same optical properties and that two (three) transits
of both Jupiter and Saturn are expected for a one year (for a 14 + 15 months) mission. This
obviously increases the signal to noise ratio by a factor of 2¢/2 (2v/3). As a result, @ 30



GHz, the shape of the main beam can be recovered down to —(25 + 32.5) dB, i.e. at about
(3.5 +4)o.

3.1 Recovery of the main beam parameters

We consider both a symmetric and an elliptical beam, with ellipticity ratio r = 1.3. The
numerical values of the beam parameters are shown in Table 1. We use Eq.(1) to model the
antenna response. We fit the beam shape theoretical parameters to the 2D plot of the beam
response obtained as mentioned at the end of the previous section.

The results of the fits are shown in Table 2. We fit also an additional parameter, rg,
related to the planet brightness temperature and to the average distance of the planet from
the spacecraft, (d), for the points considered in the fit: 7y, = 7(R/(d))?T®)/ [, J(%) dQ. We
recover the full set of parameters with very high accuracy, the x?/ DOF being always very
close (to better than 1%) to the unity value. It is obviously more efficient to recover the beam
pattern parameters using Jupiter rather than Saturn, simply because Jupiter is brighter.

An interesting byproduct of the beam fitting procedure is the possibility of estimating the
planet’s antenna temperature, or more properly the product T(®) R? relevant for the planet’s
emission at the considered frequency. This quantity, as previously stated, is a poorly known
quantity at LFT’s frequencies. By considering Eq. (2) it is clear that the latter temperature,
T®) is related to the normalization of the bivariate which is in turn very well constrained by
our fit. The ability to estimate T®) then rests upon the overall calibration accuracy? and on
the knowledge of the total antenna beam integral. Calibration for PLANCK will be provided
by continuous observation of the CMB dipole signature and its modulation introduced by the
spacecraft motion (Bersanelli et al. 1997) and is expected to be accurate to within 1%. The
total integral of the antenna pattern poses a more serious problem, as the contribution of the
far side lobes goes undetected when using a celestial source. However, optical calculations
(de Maagt 1998) show that the contribution to the antenna pattern coming from outside the
main lobe is expected to be < (2+3)% of the total. The uncertainty on the latter figure may
then dominate and pratically set the accuracy on the LFI estimate of T(); therefore, even a
poor knowledge of this contribution (e.g., with an accuracy of ~ 30%) allow to reach a ~ 1%
level of accuracy in the measurement of T(®).

4 Discussion and conclusions

We implemented the PLANCK flight simulator (Burigana et al. 1997, 1998, Maino et al. 1999)
to properly discuss the impact of the Solar System main bodies on the PLANCK observations.
In particular, we focused on the problem of the in-flight reconstruction of the main beam of
the PLANCK-LFI antenna patterns. To do so, we simulate in details the transits of Jupiter
and Saturn in the field of view of the PLANCK-LFI, 30 GHz beam. The method can be easily
extended to the other PLANCK channels. Our analysis shows that, using Jupiter, we can
recover in flight the main beam response down to ~ —(25 + 32.5) dB, where the signal to
noise ratio approaches unity.

Both circular and elliptical Gaussian beams have been considered, but the method can
be generalized to more refined parametrizations.

We have demonstrated that the key parameters of the main beam (resolution, ellipticity,
position and inclination on the plane of PLANCK field of view) can be simultaneously recovered
with high precision by fitting the planet transit signal. Of course, the larger signal to noise

2We want to stress that the calibration of the TOD is not needed in order to reconstruct the other beam
parameters.



ratio of Jupiter (compared to that of Saturn) translates in a better parameter recovery, by a
factor 3 + 5.

The possibility to combine a very accurate in-flight calibration by using the CMB dipole
(Bersanelli et al. 1997) and the good accuracy in the recovery of the maximum signal (the
parameter 7 in Table 2) at the planet transit, offers a good chance of measuring the intrinsic
planet temperatures at millimetric wavelengths with an accuracy at % level, the main source
of error being the uncertainty on the integrated antenna pattern response. This represents
an interesting byproduct of PLANCK observations.

To summarize, at least at 30 GHz, observation of external planets offers an accurate
and simple method to reconstruct in flight the main beam parameters under very general
conditions.

In the future we want to extend the analysis to more realistic main beam shapes, like
those computed by optical simulation codes, and take into account the effects introduced by
the spacecraft pointing uncertainty and the beam smearing due to the satellite rotation.
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Figure 1: Top panel: signals of different components along the scan circle with the maximum
of Jupiter contribution during its first transit. Solid line: Jupiter signal; crosses: white noise;
diamonds: 1/f noise coupled to white noise; dotted line: signal from CMB and extragalactic
source fluctuations and Galaxy emission modelled according to Burigana et al. 2000 and
references therein. Bottom panel: the same as in the top panel, but considering the signal at
the same scan position, where Jupiter signal is maximum, for different scan circles. According
to the simulation parameters, by multiplying the scan circle number or the sampling number
on the scan circle by 5 we have respectively the angular displacement between different scan
circles and (approximately, owing to the off-axis beam position) the angular displacement
between different samplings along the scan circle, expressed in arcmin. We consider here the
case of an elliptical beam with r = 1.3, clearly visible in the different spread of Jupiter signal
in the two panels. Note that the signal to noise ratio is larger than unit up to —(20+25) dB,
i.e. at about (3 + 3.5)0. [Signals in dB normalized to the maximum Jupiter signal at its first
transit].
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Table 1: Input parameters of symmetric and elliptical beam for the considered planet transits.

Input values

€ o r Tt o102 | yh - 102
Event (deg) (arcmin) — (mK) — -

circ. | ellipt. circ. | ellipt.

Jupiter (I) 35.8297
Jupiter (II) 35.4743
Saturn (T) — 0 14.01381 | 1 1.3 7.8543 | —5.76035 | 7.91971
Saturn (II) 7.8229

¥ The value 74 depends on the distance between the spacecraft and the planet which slightly varies

between different pointing events.
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Table 2: Recovery of the beam parameters from the considered planet transits.

€ o T Tk x4 - 102 | yh-10* | x*/DOF
Event (deg) | (arcmin) — (mK) — — —
Circular beam
14.0071 1.0039 | 35.877 | —5.7602 | 7.9192
Jupiter (I) - +0.0089 | £0.0012 | £0.032 | £0.0004 | £0.0004 0.994
14.0126 1.0010 | 35.486 | —5.7603 | 7.9200
Jupiter (II) - £0.0092 | £0.0013 | £0.033 | £0.0004 | £0.0004 0.997
13.996 1.0067 7.839 | —=5.7659 | 7.9204
Saturn (I) — +0.042 | £0.0061 | £0.033 | £0.0020 | +£0.0015 0.998
14.034 1.0078 7.797 | =5.7637 | 7.9209
Saturn (II) — +0.042 | +0.0061 | £0.033 | £0.0020 | £0.0015 1.007
Elliptical beam
—0.0059 | 14.0095 1.3023 | 35.876 | —5.7602 | 7.9193
Jupiter (I) 40.0024 | +0.0088 | +0.0016 | £0.032 | +0.0004 | £0.0003 0.995
0.0011 14.0102 1.2993 | 35.491 | —5.7603 | 7.9199
Jupiter (II) || £0.0025 | £0.0092 | £0.0017 | £0.033 | +0.0004 | +0.0003 0.997
—0.007 14.004 1.3055 7.837 | —=5.7661 | 7.9199
Saturn (I) +0.011 +0.042 | +£0.0078 | £0.033 | £0.0020 | £0.0015 0.999
0.009 14.041 1.3073 7.796 | —5.7645 | 7.9207
Saturn (II) +0.011 | £0.042 | £0.0078 | £0.033 | £0.0020 | £0.0015 1.007

11




