Internal Report ITeSRE/CNR 310/2001

March 2001

PLANCK-LFI Destriping Code
Users’s Guide
Issue 2.0

G. StancHELLINTY, C. BURIGANA', D. MAINO?,
M. MALASPINA!, M. MALTONI?, M. MARIs?

Document: PL-LFI-TES-MA-002

Revision: Issue 2.0; March 27, 2001

Prepared by: Giuseppe Stanghellini, Carlo Burigana, Davide Maino
Marco Malaspina, Michele Maltoni, Michele Maris

Authorized by: Fabio Pasian

Ustituto TeSRE/CNR, via P. Gobetti 101, I-40129 Bologna, Italy

2 0sservatorio Astronomico di Trieste, OAT, via G.B. Tiepolo 11,
I1-34131 Trieste, Italy

3 Instituto de Fisica Corpuscular — CSIC/UVEG,

Edificio Institutos de Paterna, Apt. 22085, E-46071 Valencia, Spain

Document: PL-LFLTES-MA-002

Revision: Issue 2.0; March 27, 2001

Prepared by: Giuseppe Stanghellini, Carlo Burigana, Davide Maino
Marco Malaspina, Michele Maltoni, Michele Maris

Authorized by: Fabio Pasian

Clurrent code version: 2.0 - March 2001

Current code anthors: Giuseppe Stanghellini, Carlo Burigana, Davide Maino,
Mareo Malaspina, Michele Maltoni.

]

Internal Heport ITeSRE/CNR 310/2001

March 2001

PLanck-LFI Destriping Code
Users’s Guide
Tssue 2.0

G. STANGHELLINI!, C. BURIGANA!, D. MAINO?,
M. MaLaspiNal, M. MALToN®, M. MARIs?

Ustituto TeSRE/CNR, via P. Gobetti 101, I-40129 Bologna, Italy
2 Osservatorio Astronomico di Trieste, OAT, via G.B. Tiepolo 11, I-34131 Trieste, Italy
3 Instituto de Fisica Corpuscular ~ CSIC/UVEG, Edificio Institutos de Paterna,
Apt. 22085, E-46071 Valencia, Spain

SUMMARY - In this document we describe the improvements recently imple-
mented in the PLANCK-LFI destriping code to make it more efficient from the
computational point of view, to partially overcome the RAM requirements and to
make it more versatile and general. We outline the guidelines for the installation
and running of the code.

The PLANCK-LFI DPC of Trieste has the responsability of the software which is
stored in the PLANCK-LFI Software Repository system under CVS.

Account to the LFI Software Repository can be obtained from the LFI DPC for
the LFI consortium members.

1 Introduction

One of the most important issues in the context of PLANCK-LFT experiment (Mandolesi
et al. 1998) is related to the 1/f noise fluctuations in LFI receivers that, when coupled
with PLANCK scanning strategy, produces artifacts in the final maps such as stripes. These
stripes can increase the overall noise level and introduce correlations which may affect the
statistical analysis of the CMB pattern in the sky. The relevant radiometer characteristic can
be combined into a single parameter, the knee-frequency fi, which has to be kept as low as
possible compared to the spinning frequency f, of the spacecraft. It has been shown (Janssen
et al. 1996) that for fi 2 f, a degradation in the final sensitivity will result.

2 The Flight Simulator

In order to assess the impact of the 1/f noise on PLANCK-LFT observations, within the LFI
Consortium, we developed a Fortran code, the so-called “Flight Simulator” (hereafter FS),
that is able to reproduce the sky observations performed by a given horn in the PLANCK focal
plane. This code is the core of all the simulations and includes all the relevant geometrical
and instrumental properties: beam location on the sky field of view, beam response func-
tion, instrumental noise, telescope configuration. A more detailed description of this code is
reported in Burigana et al. (1997) and Maino et al. (1999).

The relevant point here is the data in output from the FS. These are several (typically
four) matrices with a number of rows equal to the number of spin axis positions (n; ~ 10200
for 2.5' shift of the spin-axis and a mission observation duration of 14 months) and a number
of columns n, equal to the total number of samplings on a given scan circle (e.g. for a
simulation at 30 GHz with 3 samplings per FWHM (=~ 33'), n, ~ 1980, weakly dependent on
the angle a between pointing and spin axes). These matrices contain the pixel identification
number N in a given pixelisation scheme at the desired final map resolution, and, typically,
the observed sky temperature with full noise (white + 1/f noise) T, the observed signal
with only white noise W and the pure signal without instrumental noise G. These last two
matrices are considered in order to evaluate the degradation of 1/f noise with respect the
pure white noise case and to study the impact of the scanning strategy geometry on the
observed pixel signal.

3 Destriping technique: concept

In this section we discuss how to eliminate the effects of gain drifts on timescales greater
than that for which the spin axis is fixed at a given direction (1 hour in the current baseline).
Usually we work with averaged scan circles i.e. we took the average over the 60 scans for a
given spin axis direction. This however is a working hypothesis for this particular case and
the code can work with all the single scan circles. Averaging is like a low-pass filtering and,
as long as f; is not far greater than f, this ensures that only the very low frequencies of the
1/f noise survive this filter operation. It has been shown by Janssen et al. (1996) that the
residual 1/f noise in this case can be well approximated as an additive level A; related to
the “mean” level of 1/f noise during the period of observation in that scan circle. Of course
these levels A; are different for different circles due to gain fluctuations. The goal is to obtain
the levels for each circle and subtract them from the corresponding scan circle. It is also
possible to search for more than one baseline, say n;, per circle. This is exactly equivalent
to rearrange the matrices N, T, W and G, dividing their rows into n; parts that have to be
properly relocated to construct matrices with n, x n; rows and n,/n; columns. The analysis
then follows in the same way of a single baseline case.

For estimating all these levels we use a computation scheme able to simultaneously find
the pixels in common between different scan circles. In the following Ny, Ty and By will
denote the pixel number, the temperature and white noise level for the pixel in the " row
and [** column. The pixel identification number can be also stored into a matrix N’ at
resolution levels different (typically higher) from that desired for the final map. This allows
to produce maps at a given resolution and searching the common pixels at another, higher,
level.

A generic pair of different observations of the same pixel is identified by 7 that will range
between 1 and n,., the total number of pairs found. In this notation m is related to two
elements of N:m — (il, jm) where i and j identify two different scan circles while [and m
are the relative position in each of the two scan circles.

We want to minimize the quantity:

(A = 4) — (Ty = Ty
s = 3 [Lacdi-Cu- Tl
allpairs E:ﬂ + E}m 4
& (A = 4y) = (T = Tjm))?
= 2 5 (1)
=1 Eii+Efm dr

with respect to the unknown levels A;. The sub-index 7 indicates that each set of (il, jm)
pairs is used in the summation. From Eq.(1) it is clear that S is quadratic in the unknowns
A; and that only differences between A; enter into the equation. Therefore the solution of the
system will be determined up to an arbitrary additive constant with no meaning in anisotropy
measurements. We choose to remove this level of uncertam‘cy requiring that 3 7 Ay = 0.
This is equivalent to replace Eq.(1) with 8" = § + (32}, Ap)?. After some a.igebra, we get:

108 & [[(A— Ay) = Ty = Tym)] - [6ik — 85 S
_ Z K i j) %§I+ Eém} { ik }k} + Z Ap =0 {2§
=l i Jm s

for all the k = 1,...,n, (here the § are the usual Kronecker symbols). This translate into a
set of n, linear equations:

Tz
Z ChipAp = By, k=1,..,ng (3
h=1
which can be easily solved. We denote with C and B the matrix of the coefficients Cyy and
the vector of coefficients Bj.

We show here how C and B are formed as we extract pixels in common. This is the way
adopted in the code. First of all we set B=0 and Cj; = 1 for each k,t (setting all Cgy = 1
takes into account the second term of Eq.(2). Then for each couple 7 of pixels in common
between two scan circles we define:

1 N
= ortee]|

LEé +E im
and -
Ty — T
_ § [jm] (5
Tp = thi T . i })

From the above equations we have that a given pair 7 contribute only to two equations
of our linear system: those for k = i or k = j. If we iteratively increment C and B as we
find a couple, explicitely we have:

Cii = Cii + xr (6)

Cij = Cij ~ X (7)
Cjsi = Cji — X (8)
Cii = Cij + Xn (9)
B, B, + 1, (10)
B — By — 7, (11)

Therefore each pair contributes to only six terms and the resulting system shows a com-
plete symmetry with respect to the exchange of the rows indexes ¢ and j. The linear system
have in fact some useful properties:

 is symmetric: we can hold in memory only half of the matrix (e.g. upper-right) and
solve the system speeding up the calculations computing only half of the matrix coef-
ficients. This is possible when using the Gauss reduction algorithm since it preserves
the symmetry of the remaining part of the matrix;

e is positie defined so there is no null pivot when reducing a non-singular matrix (Strang
1976). It is possible to solve the system without exchange rows and columns, so pre-
serving symrnetry;

e is not singular provided that enough pairs are present since the only indetermination
is removed.

When the system is solved, we end up with the baseline levels A; which have to be
subtracted from the matrix T.

4 Destriping technique: the code

Here we report the structure of the code and the main flow of data. See also the users’s guide
of the PLANCK-LFT destriping code, issue 1.0 (Maino et al. 2000).

1. int main (int argc, char **argv)

this is the main section of the code. First of all the code read from the file [ReadParams ()]
provided in the calling sequence the required inputs. Then create and sort the vector
of pixel numbers [CreateSortedVector(, ,)]. It also reads the other TOD with full
signal [ReadFortranMatrix(, , , ,)] . Creates the symmetric matrix C and the
matrix B of coefficients [CreateMatrix(, , ,)], call for solving the system [Solve(
s » »J], produce the destriped matrix [DestripeMatrix(,)] and save the results
into FITS or binary files [WriteFits(, , ,)].

2. CreateSortedVector (struct VECTOR vec, char *pix filel, char * pix file2)

this routine read from FORTRAN files pix filel and pix file2 the matrices with pixel
numbers at different map resolution (typically ngg. = 256 and 512 for a 30 GHz
simulation). The structure vec has four attributes that are the pixel numbers at
different resolution for the corresponding position in the vec (vec[idx].pixel and
vec[idx] .hires}) and the original row and column in the matrix N (vec[idx].row
and veclidx].col). The structure is ordered according to the vec[idx].pixel at-
tribute.

Gt

. CreateMatrix(char *filename, double *mtx, struct VECTOR vec, unsigned int

*cnt)

this routine create the matrix of coefficient Cj and known terms elements By. It works
as follows. A memory buffer is created large enough to keep L lines; the search for pairs
starts and the quantities x, and 7, are evaluated; if i € [0, ..., L — 1] then Egs. (6,7,10)
are evaluated; if j € [0,...,L — 1] the Egs.(8,9,11) are applied. After all couples are
evaluated the memory buffer is saved into a file. These steps are repeated for ¢ and j
in the range [L,...,2L — 1] and so on until the matrix coefficients is completed. This
is then saved into a binary file that have n, rows and n, + 1 columns where the last

column contains the known terms.

Solve(char *temporary, char *filename, double * solution, bool.do.verify)

this is the routine that solve the system using the Gauss elimination method. As for
the creation of the symmetry matrix a memory buffer which contains L lines is created.
These first lines are loaded and complete Gauss elimination is performed: each line is
reduced by the preceding lines and used to reduce the following. Each of the remaining
ns — L lines is sequentially loaded into memory an reduced by each of the L lines stored
into the buffer. The buffer is flushed and the next L lines are considered and reduced.
These steps are repeated until to system is completely reduced.

. DestripeMatrix(double *temp, double *solut)

this routine subtract from the matrix T the baseline levels stored in solut. The result-
ing matrix is then converted into a map with Matrix2Map(, ,) that simply coadd
pixels to form a sky map.

WriteFits(double *map_buff, map size, sizeof(double), n fc tvhite)

this routine write the output map in a FITS file using the CFITSIO 2.0 library. Since
the input map of the FS code are in HEALPix pixelisation scheme (Gérski et al. 1998),
the same will be for the output map. Therefore maps can be stored as C/IDL binary file
or as binary tables, in which case the header of the FITS file is according to HEALPix
header style. The input FS code data streams are presently assumed to be binary
files, written row by row (Integer*4 for pixel numbers and Real*8 for temperature
values). Future code releases will consider different input data format (typically in
FITS), according to the conventions of PLANCK observation simulation codes available
in the future. We note that this code can work with arbitrary pixelisation schemes,
the first version being in fact written assuming QuadCube pixelisation. An equal area
pixelisation scheme is particularly advantageous for a uniform applicability on the sky
of the crossing condition rule, since it is actually implemented by using pixel number
only to have computational efficiency. Also it is very useful to work with pixelisations
offering a wide choice of resolutions; a hierarchic structure, although simplifies the
construction of input pixel matrices at different resolutions, is not a requirement for
this code.

5 Changes of the input parameter file

Here we report the changes of the 2.0 version over the 1.0 and how them reflects to the input
parameter file.

1. Characterization of input/cutput files

An improvement over the old version of the code is that now the program is able
to read/write the input or output files in single or double precision, the user can
choose amongst them by specifying, into the input parameter file, the keywords OUT-
PUT DATA PRECISION and INPUT_DATA _PRECISION as single or double, and, is
of course possible, to have single precision input files and double precision output file,
as well as the opposite. We must state at this point that the internal computations that
the program does, during the coadding and the destriping phase are always in double
precision, regardless of the choice of that two parameters; in fact the program trans-
lates the input files in double precision format, during the reading operation, and does,
double to single conversion, during writing of the output files, letting the arithmetical
precision of the results, virtually inalterate. The keywords INPUT _DATA_FORMAT
and OUTPUT_MAP_FORMAT specifies the format respectively for input data files
(globally for all input files) and for the ouput map files (globally for all output map
files). They can get the values “fortran_binary” or “raw_binary” for the input data
format, and “raw_binary” or “fits” for output map format.

2. Input temperature files

With the 2.0 version of the software it is possible to tell the program that some input
files were not acquired, by putting the string “n/a” as filenames in the input parameter
file. In the same way if we don’t want to generate some output file we can use the same
string “n/a” in the same way as for the input files, to tell the program that the output
is not applicable. In this way is no longer required to generate all ouput maps, saving
cpu time and disk space.

In this version 2.0 of the LFI destriping code it is possible to give as input of the
program the TEMP_NO_NOISE FILE and to specify if this stream must be added to
the streams TEMPERATURE_FILE and TEMP_WHITE_NOISE_FILE. In this way,
we can have for example as input a stream with pure sky temperatures (or other kind
of signals, i.e. signals from periodic fluctuations — see the last section) and two streams
with pure noisesg only.

These options are controlled by the the keyword:
ADD NONOISE_TO.NOISE vyes/no

for the stream associated with TEMPERATURE_FILE, and by the keyword
ADD NONOISE.TO_WHITENGISE vyes/no

for the stream associated with TEMP_WHITE _NOISE_FILE.

The user can use these options according to the specific problem to solve.

As illustrative example we can, with these possibilities for the input parameters, to man-
age the case in which TEMP _NO_NOISE_FILE contains only pure sky signal and TEM-
PERATURE.FILE (TEMP_WHITE_NOISE_FILE) contains pure noise (pure white
noise) or the sum of the noise (pure white noise) and pure sky signal.

3. Pixel files and related keywords

@]

Four new pixel related keywords have been introduced to allow to the user more flexi-
bility on pixel input files. They are:

PIXEL USAGE METHOD resample/as_is

PIXEL_NSIDE integer
PIXEL CROSSING NSIDE integer
PIXEL _MAP NSIDE integer

We remember that in previous version two pixel input files were requested from the
program: the pixel file and the pixel hires file. With these new possbilities the user can
choose two operating mode: with PIXEL_.USAGE_METHOD equal “as_is” we have the
old behaviour, with PIXEL_USAGE_METHOD equal “resample” we have the following
behaviour: given the PIXEL_NSIDE equal tho the nside of the input pixel file, the pixel
file for crossing computation/crossing searching will be the pixel input file resampled
with PIXEL_CROSSING_NSIDE value, and the pixel file for map computation will be
the pixel input file resampled with PIXEL.MAP _NSIDE value.

As illustrative example we can do that with the following choices for pixel related
parameters:

PIXEL USAGE _METHOD resample

PIXEL _NSIDE 4096
PIXEL_CROUSSING NSIDE 512

PIXEL MAP NSIDE 256

PIXEL FILE pix_ 4096 .bin
PIXEL HIRES FILE n/a

In this case the original pixel file “pix_4096.bin” had a NSIDE equals to 4096 while the
pixels used for crossing searching will have NSIDE equals 512 and pixels use for map
computations will have NSIDE equals 256.

4. Additional input streams

Two new input streams were added to the program:

FLAG MATRIX FILE flag.asc
SENSITIVITY MATRIX_FILE err.bin

The flag matrix contains, line by line, pairs, each of them identifies row and column of
pixels that have to be considered erroneous, thus not applicable in further computations.

This feature also allows to work with input matrices with a different number of columns
in the different rows (i.e. as in the case of not regular sky sampling).

The sensitivity file is a matrix that contains for each pixel of input streams, a sensitivity
value to get rid of instrumental sensitivity oscillations that could arise during very long
observations.

. 01d and new output maps

The old output maps, the related keywords and their contents are (see also the point
2. of this section}:

TEMPERATURE_MAP map.t.bin noise (+ sky signal) map
TEMP NO_NOISE_MAP map_tnonoise.bin sky signal map
TEMP_WHITE_NOISE_MAP map.twhite.bin white noise (+ sky signal) map
DESTRIPPED_TEMP_MAP map.tdestr.bin destriped noise (+ sky signal) map
SENSITIVITY MAP map.nobs.bin map of sensitivity per pixel

COUPLE_RECURRENCE_MAP mapxing.bin # of times in which pixel=crossing

9

OUne new output map was added to the program:

POINTINGS.MAP npoint.map.bin # of pointings per pixel
The pointing map is a map that contains for each pixel the number of pointings of that
pixel.
[The third column are comments inserted here for more clarity of the contents of the
destriping.par file. The relevant columns are only the first two.]

6. Solving the system

It is now possible to tell the program to not solve the system, by specifying the keyword
SOLVE.SYSTEM yes/no in the par file. With this new feature is it possible to load a
previously computed solution by file and then proceed with the destriping phase, saving
all the time to solve the system, of course, is necessary that the system was solved at
least one time for each set of input streams. This is obtained by specifying in the input
parameter file the following keywords:

SOLVE SYSTEM no

LOAD_SOLUTIONS FRUM_FILE solut.bin recovered baselines
SOLUTIONS FILE n/a

DESTRIPPED_TEMP MAP t_destr.map.bin

With these parameters the program will try to load the solution from the soluf.bin file
that in this case is not any more an output file but becomes an input file, if this is
succesfull then the program continues with the last step of the destriping phase; the
application of the solution to the input stream.

The buffer related keywords are used to set the maximum amount of physical memory
that the program will trv to allocate in the process of system solving.

The NCREATE BUFFER.MEMBERS refers to buffer size used in the phase of system
creation, while the others two, to buffer sizes used in the phase of system solving. All
numbers refers to number of elements that the system will try to allocate, thus to have
the absolute number of bytes of memory allocated these numbers should be multiplied
by 8 (the size in byte of the double precision internal representation of a number).

N_.CREATE_BUFFER_.MEMBERS 10000000 # of buffer members
N_BIG_BUFFER_-MEMBERS 4000000 # of big buffer members
N SMALL BUFFER_MEMBERS 1000000 # of small buffer members

One of the bigger changes to the program is that now the solving of the system per-
formed during the destriping phase can be obtained by dividing the linear system in
subsystems, and by solving them one at a time, reducing drastically (in the order of ten
to hundred times) the cpu time required for destriping; loosing, of course, something
on final precision.

This is obtained by specifying in the input parameter file the following keyword:
ROWS_PER_ITERATION integer number

[The third column are comments inserted here for more clarity of the contents of the
destriping.par file. The relevant columns are only the first two.]

6 Code requirements and compilation

This code can run virtually on every machine, for what concern the system solution, almost
regardless of its RAM, thanks to an interesting use of memory buffer. Reducing the size of

10

the buffer, will produce only a small increase of the computation time. An optimal choice
has to be taken considering the RAM of the machine and the proper buffer size in order to
do not make the code swapping on disk.

In the carrent version it is possible to write file in FITS format. It is therefore necessary
to have installed the software package that allows to manipulate FITS file: CFITSIO V 2.0
library (http://heasarc.gsfc .nasa.gov/docs/software/fitsio/). [It is however possible
to work only with binary files properly selecting the format of output files and commenting
the routine which write FITS files.]

The code now compiles through a makefile in several architecture, the compilation is done
with the following command:

make arch

Where arch is the name of the architecture; by simply issuing the command “make”
it is possible to gain information on supported architectures (currently linux, digital unix
and irix). The makefile get rid also of generating the fitsio library, as with this version of
symmetry it is included in a subdir at the same level of the symmetry package.

The code needs an input file with several parameters defined. The calling sequence will
be:

./symmetry symmetry.par

where all the mentioned parameters are written into the “.par” file.

6.1 Parameter file

Here we report the structure of the parameter file symmetry.par.

#

Parameters file for symmetry

¥

Input file names (these files are supposed to be in Fortran format)
#

PIXEL FILE pix.map_resolution.bin matrix N
PIXEL HIRES FILE pix.search.resolution.bin matrix N’
TEMPERATURE FILE t.signal_and noise.bin matrix T
TEMP _NO_NOISE FILE t.onlysignal.bin matrix G
ADD NONOISE TONOISE yes/no
TEMP WHITE NOISE FILE t.signal whitenoise.bin matrix W
ADD_NONOISE_TO WHITENOISE yes/no
FLAG MATRIX FILE rows and columns of pixels. asciifile
SENSITIVITY MATRIX FILE err.bin matrix E
LOAD_SOLUTIONS FROM_FILE solut.bin recovered baselines
#

Output file names (these files are supposed to be in C/IDL format)
Remember to create the appropriate subdirectory for output files !!!

#
SYMM_TEMPORARY FILE temp_symmetry file.bin temporary file

SYMM.MATRIX FILE symm.bin symmetric matrix when solving
SOLUTIONS FILE solut.bin recovered baselines

i1

TEMPERATURE MAP
TEMP_NO_NOISE MAP
TEMP_WHITE NOISE_MAP
DESTRIPPED_TEMP _MAP
SENSITIVITY MAP
COUPLE_RECURRENCE _MAP
PUOINTINGS MAP

Input parameters

EIE

PIXEL_USAGE METHOD
PIXEL_NSIDE
PIXEL_CRUSSING NSIDE
PIXEL _MAP NSIDE
INPUT DATA FURMAT
INPUT DATA PRECISION
OUTPUT DATA_PRECISION
OUTPUT MAP FORMAT
MATRIX ROWS

MATRIX _COLOUMNS
ROWS_PER_ITERATION
N_PIXELS _MAP

SPIN_ERROR
GAUSS_THRESHOLD_PERCENT
N_CREATE_BUFFER_MEMBERS
N_BIG_BUFFER_MEMBERS
N_SMALL _BUFFER MEMBERS
SOLVE_SYSTEM
VERIFY_AFTER_SOLVE

map.t.bin
map.tnonoise.bin
map_tvhite.bin
map.tdestr.bin
map.nobs.bin
map.xing.bin
map.npoint.bin

resample/as is
integer
integer
integer

noise (+ sky signal) map

sky signal map

white noise (+ sky signal} map

destriped noise (+ sky signal) map

map of sensitivity per pixel

map of the # of times in which that pixel is a crossing
of pointings per pixel

Method for pixel usage

nside of PIXEL FILE

nside for crossing searching
nside for map computation

raw binary/fortran binary Input format of all files

single/double
single/double

raw binary/fits

integer
integer
integer
integer
double
double
integer
integer
integer
yes/no
yves/no

precision of all input files
precision of all cutput files
output files: fits or IDL (raw binary)?
Tig

"p

of recovered baselines of each subsystem
Nyip of the map

(averaged) TOD sample sensitivity

% accuracy in method

of buffer members

of big buffer members

of small buffer members

solve or not the system

verify solution

[The third column are comments inserted here for more clarity of the contents of the
destriping.par file. The relevant columns are only the first two.]

7 Tests

Some successfull tests of this version of the LFI destriping code has been carried out in the
context of the simulation work to remove systematic effects induced by periodic fluctuations

(possibly jointed to white and 1/f noise) in PLANCK-LFI data (Mennella et al. 2001).

Please, send any possible bug report to C. Burigana (e-mail: buriganaQtesre.bo.cnr.it)
and G. Stanghellini (e-mail: gstanghe@igm.bo.cnr.it).

12

References

[1] Burigana C., Malaspina M., Mandolesi ?\ﬂ et al., 1997, Int. Rep. TeSRE/CNR 198/1997

[2] Gérski K.M., Hivon E., Wandelt B.D., 1998, to appear in “Proceedings of the MPA/ESO
Conference on Evolution of Large-Scale Structure: from Recombination to Garching”,
Banday A.J. et al. (Eds.), astro-ph/9812350

[3] Janssen M., Scott D., White M., et al., 1996, astro-ph/9602009
[4] Maino D., Burigana C., Maltoni M., et al., 1999, A&AS, 140, 383

[5] Maino D., Maris M., Burigana C., Stanghellini G., Maltoni M., 2000, PL-LFI-OAT-MA-
002, Issue 1.0, April, “PLANCK-LFI Destriping code Users’s Guide”

(6] Mandolesi N., et al., 1998, PLANCK Low Frequency Instrument, A Proposal Submitted
to the ESA

[7] Mennella A., Bersanelli M., Burigana C., Maino D., Mandolesi N., Morgante G,
Stanghellini G., 2001, A&A, in preparation.

[8] Strang G., 1976, “Linear Algebra and Its Applications”, Academic Press, Ine.

—

