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THE FIRST GALAXIES  

Credit: Avi Loeb/Scientific American z~7-6



THE FIRST GALAXIES: THE ALMA VIEW  

Credit: Avi Loeb/Scientific American z~7-6

[CII] emission
Carniani+2018
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ISM OF FIRST GALAXIES: [CII] OBSERVATIONS



Matthee+2017 Matthee+2017 

Spectral offset between the [CII] emission  
and the Lya

Carniani+2017 

Spectral offset

ISM OF FIRST GALAXIES: [CII] OBSERVATIONS



Jones+2017

Gallerani+2018

Kinematical studies

Smit+2017

Hashimoto+2017

ISM OF FIRST GALAXIES: [CII] OBSERVATIONS

Kohandel+in prep



ISM OF FIRST GALAXIES: CO OBSERVATIONS

ALMA CO(6-5) detection in a galaxy z>6 with SFR<100  M⦿/yr at z~6

D’Odorico+2018

e.g. Wang+2016

SMGs at z>5.5: SFR>1000 M⦿/yr

e.g. Riechers+2017Pavesi+2018

z>6 quasar

see also:  e.g. Walter+2007, Spilker+2015, Venemans+2017, Strandet+2017, … 



THE PECULIAR CONDITIONS OF FIRST GALAXIES  

2. Accreting clumps, frequent mergers

Jones+2017 Pallottini+2017 Carniani+2017

1. Compact, highly star-forming

Matthee+2017 Berhens+2018 Smit+2017

5 kpc
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~10-100 PC SCALES

➤ Detailed PDR calculations to model the interaction 
of FUV photons with gas (photoelectric heating, 
metal cooling, etc) 

➤ Consider the internal density field of molecular 
clouds on scales <1 pc (turbulence, self gravity) 

➤ Account for the feedback of star formation (e.g. 
ionization feedback, photoevaporation feedback, etc) 

Pallottini+17a

[CII] 158 µm  

[OIII] 88 µm  
CO rotational lines 

SIMULATING THE ISM PROPERTIES OF FIRST GALAXIES



See Pallottini+2017b for details

AMR code RAMSES  
(Teyssier 2002) 

spatial res=30pc 
Mass res=104 Msun 

PROPERTIES AT z=6: 
MDM  = 1 x 1011 Msun 

Mstar = 3 x 1010 Msun 

Z = 0.5 Zsun 

STAR FORMATION: 
H2 dependent  
SK relation 

CHEMICAL NETWORK:  
KROME (Grassi+2014) 

STELLAR FEEDBACK: 
SN explosion: thermal and kinetic 
(blast-wave model;  
Ostriker & McKee 1988) 

COSMOLOGICAL ZOOM-IN SIMULATION



Pallottini+2017a,b

over-dense accreting filament

merging satellites molecular disk

COSMOLOGICAL ZOOM-IN SIMULATION



COSMOLOGICAL ZOOM-IN SIMULATION

cold neutral medium (CNM) 

warm neutral medium (WNM) 

molecular clouds (MCs)  

HII region

FUV  
photons 

EUV 
photons

Hollenbach & Tielens 1999

patch of the ISM

• At high-z the CMB is a strong background (T~20 K @ z~6) and cannot be neglected! 
(Da Cunha+2013)

MODELLING THE [CII] EMISSION

G0



COSMOLOGICAL ZOOM-IN SIMULATIONMODELLING THE [CII] EMISSION

CII surface density       [CII] emission

1/3 of the CII mass  
in diffuse gas 

(invisible due to CMB)

95% of the emission 
colocated with 

the H2 disk

Vallini+2015, Pallottini+2017a

C+ surface density [CII] surface brightness



COSMOLOGICAL ZOOM-IN SIMULATIONEFFECT OF THE CMB ON THE [CII] EMISSION

Olsen+2017

Vallini+2013, 2015
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Vallini+2015 updated with data up to 2018

[CII]-SFR RELATION AT HIGH-Z

Carniani+2017

The multiple component objects 
are split into  
several individual components 
with their own SFRs and L[CII]
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[CII]-SFR RELATION AT HIGH-Z, PHOTOEVAPORATION FEEDBACK

Gorti&Hollenbach+2002, (only FUV)  

Decataldo+2017  (FUV+EUV) 



Vallini+2017

THE EFFECT OF PHOTOEVAPORATION ON THE [CII] EMISSION



Vallini+2017

faster photoevaporation with decreasing Z

THE EFFECT OF PHOTOEVAPORATION ON THE [CII] EMISSION



Vallini+2018

CO EMISSION FROM HIGH-Z
See e.g. Padoan+2011,2014, 

Ostriker+2001,Federrath+2013, Girichidis+2014



Vallini+2018

CO EMISSION FROM HIGH-Z
See e.g. Padoan+2011,2014, 

Ostriker+2001,Federrath+2013, Girichidis+2014

Vallini+2018

varying mean 
density

varying 
Habing field

varying 
Mach number



Vallini+2018

CO EMISSION FROM HIGH-Z

CO(7-6) surface brightness map

LCO(7-6) = 107.1 L⊙ i.e. ≈ 1/16 of the [C II] 
luminosity.  

To detect the CO(7-6) line with a S/N=5 an 
ALMA observing time of ~20h is required. 

See e.g. Padoan+2011,2014, 
Ostriker+2001,Federrath+2013, Girichidis+2014



THE CMB EFFECT ON THE CO SLED

CO(7-6) surface brightness

CO Spectral line Energy  Distribution

➤ the increased density and temperature boosts 
the CO SLED and shifts the peak 

➤ The CO SLED peaks at CO(7-6) (observable 
from z>6 with ALMA)

Da Cunha+2013

Vallini+2018



THE CMB EFFECT ON THE CO SLED

CO(7-6) surface brightness

CO Spectral line Energy  Distribution

➤ the increased density and temperature boosts 
the CO SLED and shifts the peak 

➤ The CO SLED peaks at CO(7-6) (observable 
from z>6 with ALMA)

Da Cunha+2013

Vallini+2018

Caveat: shocks and/or X-rays might influence the shape of the CO SLED



EXAMPLES IN THE LOCAL UNIVERSE
Caveat: shocks and/or X-rays might influence the shape of the CO SLED

Pozzi,LV+2017

Mingozzi,LV+2018

NGC 34 NGC 7130



H2 ROTATIONAL LINES: A SHOCK TRACER

Shocks are luminous sources of H2 vibrational/ro-vibrational lines whose excitation temperature (T~500 
K-3000 K) is much higher than that of CO lines 

For a wide range of shock conditions, H2 molecules are not dissociated, and the gas becomes warm 
enough for lines to be excited by collisions. 

In the SPICA bands from high-z
Egami, ..LV+2018

H2 line emission produced by transitions between two rotational energy states (J=3->1) in the ground electronic vibrational level (v=0)  
0–0 S(1) (v = 0 → 0; J = 3 → 1) at 17 µm.



THE EFFECT OF THE X-RAYS ON THE CO EXCITATION
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⟨αCO⟩ = 1.54 ± 0.9 M⊙/(K km s−1 pc2)

Popping+2016

Narayanan+2012, different 𝞢gas

Feldman+2012 

Bolatto+2012 
Sandstrom+2013 

Leroy+2011 

Popping+2016

➤ little spatial variation 
throughout the disk.  

➤ dispersion is primarily 
introduced by density 
variations in the disk. 

The CO-to-H2 conversion factor:

Vallini+2018

THE CO-to-H2 CONVERSION FACTOR



CONCLUSIONS

[CII] line emission influenced by CMB, photoevaporation and metallicity. 

CO line emission at high-z boosted by high surface density, and the high 
turbulence.  

Differential effect of CMB background on the observed luminosity of the various 
CO lines (low-J lines more affected) 

High-J CO lines can be detected with ALMA from z~6-7 galaxies in ~20 hours. 

If there are shocks and/or X-ray, the CO SLED is more excited and thus the 
detection could be much easier. 

SPICA-ALMA SINERGIES 
H2 line detection with SPICA might help in understanding the importance of shocked 
molecular gas in galaxies at high-z. 


