

Re-solving the jet/cocoon riddle of the first gravitational wave with an electromagnetic counterpar

Giancarlo Ghirlanda INAF-Osservatorio Astronomico di Brera giancarlo.ghirlanda@inaf.it

- ① The "tale" of three discoveries (in ~half a day!)
- 2 Gamma Ray Bursts, jets and related stuff
- ③ What was GRB(GW)170817?
- (4) What's next?

Bologna – 2019/03/21

170817 - The "tale" of three discoveries (#1)

Abbott et al. 2017 PRL

	Low-spin priors $(\chi \le 0.05)$
Primary mass m_1	$1.36-1.60 M_{\odot}$
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0
Total mass $m_{\rm tot}$	$2.74^{+0.04}_{-0.01}M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc
Viewing angle Θ	$\leq 55^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800

Bologna - 2019/03/21

170817 - The "tale" of three discoveries (#2)

Abbott et al. 2017 ApJL, Goldstein et al. 2017: Shevchenko et al. 2017 M_{Merger}^{ger} G_{RB}^{start}

Kasliwal et al. 2017 Sci.

~ 2 sec delay GW-EM
~ 2 sec duration of EM

Bologna – 2019/03/21

170817 - The "tale" of three discoveries (#3)

NASA/ESA. HST (credits: Levan et al.)

Coulter et al. 2017 Nat; Andreoni+2017; Cowperthwaite+2017; Diaz+2017; Drout +2017; Pian+2017; Kasliwal+2017; Smartt +2017; Tanvir+2017; Valenti+2017; Covino +2017 Kilonova

Gamma Ray Bursts

>1973 Short flashes of keV photons PROMPT

(e.g. Piran 2004, RMP)

>1997 Accompained by emission at lower frequencies AFTERGLOW

X-ray

Optical

Bologna - 2019/03/21

Gamma Ray Bursts

BAT-XRT data for GRB 091020

http://www.swift.ac.uk/burst_analyser/

Bologna - 2019/03/21

Gamma Ray Bursts

Relativistic jets

Bologna – 2019/03/21

rev: Kumar 2016; Berger 2014

2

Gamma Ray Bursts

Bologna - 2019/03/21

GRBs: collimation and relativistic beaming

Fong et al. 2016

Ghirlanda et al. 2018

Bologna - 2019/03/21

2

Where is the afterglow of 170817?

Troja et al. 2017, Nat;

3

Non standard decay afterglow

Bologna - 2019/03/21

Abbott+2017; Goldstein+2017; Zhang+2018

Troja+2017; Fong+2017

Bologna - 2019/03/21

3

GRB 170817 – Off axis jet

Abbott+2017; Goldstein+2017; Zhang+2018

Troja+2017; Fong+2017

Bologna - 2019/03/21

GRB 170817 – Off axis jet ??

Gamma Ray Bursts → relativistic jets

But only slightly off axis

3

GRB 170817 – Unexpected afterglow

Gamma Ray Bursts → relativistic jets

Bologna – 2019/03/21

10

30

Time (days)

20

40

60

80

100

10¹

3

Gamma Ray Bursts \rightarrow relativistic structured jets

Bologna - 2019/03/21

Structured jet: a natural expectation

Lazzati et al. 2016

Succesfull jet or Structured jet

3

Structured jet: a natural expectation ... but

Lazzati et al. 2016 2 iet head 1 cocoon lateral shock $Log_{10}[\rho'/(g\ cm^3)]$ $y [10^9 \text{cm}]^{\circ}$ 0 jet hear COCOON rev shock reconfinement -2 shock jet base 0 -3 -3 -2 -1 0 x [10⁹cm] 2 1 3

Choked jet or Failed jet or Cocoon

Bologna – 2019/03/21

3

GRB 170817 – choked jet model

Gamma Ray Bursts \rightarrow relativistic structured jets

Bologna - 2019/03/21

Which structure?

Bologna - 2019/03/21

3

Which structure?

Bologna – 2019/03/21

Polarization

4) Emission mechanism

Bologna – 2019/03/21

G. Ghirlanda

3

[Gill & Granot 2018; Nakar+2018; Zrake+2018; Mooley+2018; Ghirlanda+2018]

Structured jet has larger displacement and smaller size than cocoon

 $\theta_{\rm obs} = 30^{\circ}$

Bologna - 2019/03/21

 (\cdot)

Global-VLBI EVN project (GG084) + eMERLIN (CY6213) {+ EVN (RG009)}

33 telescopes 5 continents **11 Research Institutes**

12-13 March 2018 = 204.7 days @ 5 GHz (32 ant. but VLA)

Compact radio emission indicates a structured jet was produced by a binary neutron star merger

G. Ghirlanda^{1,2,3*}, O. S. Salafia^{1,2,3*}, Z. Paragi⁴, M. Giroletti⁴, J. Yang^{6,7}, B. Marcote⁴, J. Blanchard⁴, I. Agudo⁸, T. An⁹, M. G. Bernardini¹⁰⁺, R. Beswick¹¹, M. Branchesi^{12,13} S. Campana¹, C. Casadio¹⁴, E. Chassande-Mottin¹⁵, M. Colpi^{2,3}, S. Covino¹, P. D'Avanzo¹, V. D'Elia¹⁶, S. Frey¹⁷, M. Gawronski¹⁸, G. Ghisellini¹, L. I. Gurvits^{4,19}, P. G. Jonker^{20,21}, H. J. van Langevelde^{4,22}, A. Melandri¹, J. Moldon¹¹, L. Nava¹, A. Perego³[±], M. A. Perez-Torres^{8,23}, C. Reynolds²⁴, R. Salvaterra²⁵, G. Tagliaferri¹ T. Venturi⁵, S. D. Vergani²⁶, M. Zhang^{27,28}

3

G. Ghirlanda

Science

Apparent motion [Mooley+2018, Nat.]

VLBA + VLA + GBT: 2/4 epochs (Sept 2017 – Apr. 2018, L,S,C,C) @ <75d> and <230d> (4.5 GHz)

75 days

12 2.7 ± 0.3 mas 8 10 0 4 Dec offset (mas) 0 0 -4 -10 0 -8 -12 -8 6 0 -2 2 -6 RA offset (mas) 10 0 -10 10 0 -10 Right Ascension (mas) Right Ascension (mas)

230 days

3

(mas)

Relative Declination

Size constraints [Ghirlanda et al. 2019, Sci]

3

Size constraints [Ghirlanda et al. 2019, Sci]

Bologna – 2019/03/21

3

Size constraints [Ghirlanda et al. 2019, Sci]

3

Bologna - 2019/03/21

Size constraints [Ghirlanda et al. 2019, Sci]

Bologna – 2019/03/21

3

Structured jet and rates

Structured jet model (universal structure) \rightarrow Luminosity function (Pescalli et al. 2015; Salafia et al. 2015; Ghirlanda et al. 2016)

At least 10% of BNS launch a jet that succesfully breaks out of the merger ejecta

Bologna - 2019/03/21

3

The current interpretation

Video by Gottlieb, Nakar, Harrison

3

Ready for O3?

DCC: LIGO-G1800370

4

The unexplored

Barbieri C., et al., 2019, arxiV:1903.04543

http://tullio.to.infn.it/~prometeo/#main

Bologna - 2019/03/21

Conclusions: the "tale" of three discoveries

- ➢ BNS merger are progenitors of short GRBs.
- GW+EM powerful to unveil progenitors and outflow structure, fundamental physics tests, cosmological inference etc.
- GW/GRB170817: did a relativistic narrow jet or a cocoon produce the (nonthermal) long lived afterglow emission?
 - Multi-wavelength modeling of L(t) (10-240 days) cannot tell apart the two scenarios.
 Wigh resolution redic charactions.
 - High resolution radio observations:
 - [Polarization (<12% but geometry or B?)]
 - Imaging:
 - Size < 2.5 mas (95%) @ 204.7 days (EVN global VLBI)
 - Proper motion 2.7 mas @ 75-230 days (HAS)
- > At least 10% of BNS might produce a jet that breaks out of the polar ejecta.
- \blacktriangleright Jet structure due to interaction with merger ejecta.
- Structured jets = universal properties (differences mostly due to viewing angle + relativistic dependent effects)

structured jet