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Cosmology with the Cosmic Microwave Background
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iverse became transparent to light during the cosmological recombination

irogen. These relic photons, called cosmic microwave background (CMB),

fated through dark ages and the era of the first galaxies carrying the most

ient images of our Universe in terms of the blackbody spectrum and the
anisotropy pattern.
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The flat ACDM model has emerged as a concordance model in agreement with a host of
observations such as BBN, astrophysical probes of reionization and baryonic acoustic oscill

from galaxy surveys, reaching a percent precision in the determination of the cosmo
parameters.
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te the precision in the knowledge of flat ACDM cosmological
1eters, we still have only upper limits on B-mode polarization
ced by primordial gravitational waves, which encode the

y scale at which inflation occurred, or on birefringence, which
be the imprint of parity violation on cosmological scales.

Moreover, the Hubble constant inferred by
CMB for ACDM is in tension with some low
redshift measurements such as from SNla or
strong lensing from quasars.
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_MB polarization experiments will be of key importance for these fundamental questions.
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1lizing on the studies and analysis of CMB anisotropies we are also involved in next galaxy surv

s Euclid.
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Inflationary models with the next generation of
cosmological experiments
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minimal Early Universe
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cosmological experiments will further tighten these constraints.
LSS will further measure the scalar tilt, running and non-
sianity, whereas CMB next polarization experiments will be

tive to smaller tensor-to-scalar ratios.

TT,TE,EE+lowE+lensing
TT,TE,EE+lowE+lensing
+BK15
TT,TE,EE+lowE+lensing
+BK15+BAO

|| Natural inflation

Hilltop quartic model
« attractors
— - Power-law inflation

4 = R?inflation

— V¢
= Vx¢'?
= Vxo¢

—_ Vo g¢??

= Low scale SB SUSY
o N.=50
@ N.=t0

Current data as from PI:
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inflationary models, tha
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scalar tilt ns, the constr:
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and on the tensor-to-sc
ratio, ie the relative abu
of gravitational waves.

We propose to use the most recent platform Cobaya
(https://cobaya.readthedocs.io/en/latest/), to update the
data analysis pipeline for the Bayesian comparison of
inflationary models already used in Planck 2015 XX, Planck
2018 X Constraints on inflation, to the next generation of
cosmological experiments (mainly LiteBIRD, Simons

Observatory, Euclid)

Co-advisors: M. Ballardini (DIFA&OAS),
F. Finelli, D. Paoletti (OAS)
Advisor: L. Moscardini (DIFA)



Study of primordial magnetism and its properties

1ordial Magnetic Fields (PMFs) generated in the early Universe may provide the seeds for large scale magnetic fields we observe
xies, clusters, filaments and voids. The properties of PMFs - such as their depedence on the wavelength and their helicity — depe
he generation mechanism and represent therefore a new window on the physics of the early Universe. The Cosmic Microws
<ground (CMB) is an excellent laboratory for this study: PMFs can leave several imprints on CMB, such as gravitational, thern

| different statistical properties.

Theoretical
Predictions
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hese effects strongly depend on the model of the suppression of PMFs by radiation
osity at small scales. The project we propose is to study different models of suppression
their relevance for current publicly available data and for future CMB experiments.
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NAF OAS we have a long experience in modelling PMFs and constraining their

verties with CMB data.. Co-supervisor: D. Paoletti, F. Finelli. Supervisor: L. Moscardini.
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Synergy between CMB spectral distortions and anisotropies

/e fantastic measurements of CMB anisotropies in We have instead only upper limits to CMB spectral distortic
ature, polarization, their cross-correlation and lensing! which we know are present as anisotropies are!
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1 cm intensity mapping as laboratory for cosmolog

ith Mario Ballardini, Fabio Finelli, Lauro Moscardini (DIFA & INAF/OAS)

Line-intensity mapping (LIM) is an emerging technique to explore galaxy and structure evolution over
cosmic times by collecting all incoming photons along the line of sight at a given frequency, without
resolving the underlying galaxies position, and measuring the spatial fluctuations in emission.

Probes:

CMB

The fluctuation maps provide a tracer of both the
underlying density fluctuations and of the physical
= J. processes that govern the radiation sources.
The proposed project is to study the future
cosmological constraints on the latter, e.g. on the
parameters related to the hyperfine structure transition
for the 21 cm line.




