Low energy cosmic rays

www.cnrs.fr

Stefano Gabici APC, Paris

gabici@apc.in2p3.fr

Cosmic ray sources: why is it so difficult?

We cannot do CR Astronomy.

Need for indirect identification of CR sources.

Cosmic rays

Cosmic rays

Cosmic rays

Why so difficult?

Why so difficult?

Far away cosmic rays

Predicted by Hayakawa in 1952 the gamma-ray sky seen by Fermi/LAT now

Far away cosmic rays

Predicted by Hayakawa in 1952 the gamma-ray sky seen by Fermi/LAT now

Far away cosmic rays

Predicted by Hayakawa in 1952 the gamma-ray sky seen by Fermi/LAT now

see e.g.

Black&Fazio1973

see e.g.

Black&Fazio1973

a MC immersed in the CR sea emits γ -rays

see e.g.

Black&Fazio1973

Aharonian&Atoyan1996

if a CR source is present, the MC emits more $\gamma\text{-rays}$

see e.g.

Black&Fazio1973

Aharonian&Atoyan1996

McKee 1989

see e.g. Black&Fazio1973 Aharonian&Atoyan1996 McKee 1989

Herbst&Klemperer1973

- only cosmic rays can penetrate and drive the chemistry in the cloud

-> filter all ionizing agents but (MeV) CRs

for reviews see e.g. Oka (2006), Dalgarno (2006)

-> CR ionization

 $H_2 + CR \longrightarrow H_2^+ + e^- + CR$

for reviews see e.g. Oka (2006), Dalgarno (2006)

-> CR ionization

 $H_2 + CR \longrightarrow H_2^+ + e^- + CR$

for reviews see e.g. Oka (2006), Dalgarno (2006)

-> CR ionization

$$H_2 + CR \longrightarrow H_2^+ + e^- + CR$$

$$H_2^+ + H_2 \longrightarrow H_3^+ + H$$
 very fast

H ₃ + production rate					
$\zeta_{\rm CR} n({ m H_2})$					

$$\zeta_{\rm CR} = 4\pi \int_{I({\rm H}_2)}^{E_{max}} dE j_{\rm CR}(E) \sigma_{ion}(E) \xrightarrow{-> CR \text{ ionization rate}}{\int_{I({\rm H}_2)}^{E_{max}} dE j_{\rm CR}(E) \sigma_{ion}(E)}$$

CRs and interstellar chemistry: H₃+ for reviews see e.g. Oka (2006), Dalgarno (2006) H₃⁺ production rate -> CR ionization $\zeta_{\rm CR} n({\rm H}_2)$ $H_2 + CR \longrightarrow H_2^+ + e^- + CR$ $H_2^+ + H_2 \longrightarrow H_3^+ + H$ very fast H₃⁺ destruction rate -> dissociative recombination $k_e n(e^-) n(\mathrm{H}_3^+)$ $H_3^+ + e^- \longrightarrow H_2 + H \text{ or } H + H + H$ CR spectrum (MeV) $\zeta_{\rm CR} = 4\pi \int_{I(\rm H_2)}^{E_{max}} dE \ j_{\rm CR}(E) \ \sigma_{ion}(E)$ -> CR ionization rate Spitzer&Tomasko 68...Padovani+ 09, Krause+15

 k_e -> from lab measurements under near interstellar conditions McCall+ 2003

for reviews see e.g. Oka (2006), Dalgarno (2006)

-> CR ionization

 $\mathrm{H}_2 + \mathrm{CR} \longrightarrow \mathrm{H}_2^+ + e^- + \mathrm{CR}$

 $\mathrm{H}_2^+ + \mathrm{H}_2 \longrightarrow \mathrm{H}_3^+ + \mathrm{H}$

-> dissociative recombination

$$H_3^+ + e^- \longrightarrow H_2 + H \text{ or } H + H + H$$

in equilibrium

$$n(\mathrm{H}_3^+) = \left(\frac{\zeta_{\mathrm{CR}}}{k_e}\right) \frac{n(\mathrm{H}_2)}{n(e^-)}$$

H3* production rate $\zeta_{\rm CR} n({\rm H}_2)$ H3* destruction rate $k_e n(e^-) n({\rm H}_3^+)$

for reviews see e.g. Oka (2006), Dalgarno (2006)

-> CR ionization $H_2 + CR \longrightarrow H_2^+ + e^- + CR$

 $\mathrm{H}_2^+ + \mathrm{H}_2 \longrightarrow \mathrm{H}_3^+ + \mathrm{H}$

very fast

-> dissociative recombination

 $H_3^+ + e^- \longrightarrow H_2 + H \text{ or } H + H + H$

H₃+ production rate $\zeta_{\rm CR} n({\rm H}_2)$

$$H_{3^+}$$
 destruction rate
 $k_e \ n(e^-) \ n(H_3^+)$

$$n(\mathrm{H}_{3}^{+}) = \left(\frac{\zeta_{\mathrm{CR}}}{k_{e}}\right) \frac{n(\mathrm{H}_{2})}{n(e^{-})} \xrightarrow{\zeta_{\mathrm{CR}} L} = k_{e} \frac{N(e^{-})}{N(\mathrm{H}_{2})} N(\mathrm{H}_{3}^{+})$$

Geballe&Oka 1996, McCall+ 2003, Indriolo+ 2012 (UKIRT, Keck, KPNO, Gemini South, VLT)

measured in the lab

Geballe&Oka 1996, McCall+ 2003, Indriolo+ 2012 (UKIRT, Keck, KPNO, Gemini South, VLT)

Geballe&Oka 1996, McCall+ 2003, Indriolo+ 2012 (UKIRT, Keck, KPNO, Gemini South, VLT)

Geballe&Oka 1996, McCall+ 2003, Indriolo+ 2012 (UKIRT, Keck, KPNO, Gemini South, VLT)

More chemistry: HCO⁺ and DCO⁺

Guelin+ 1977, Caselli+ 1998

-> N_H too large to see foreground stars

Guelin+ 1977, Caselli+ 1998

- -> N_H too large to see foreground stars
- -> much smaller electron fraction

 $H_3^+ + CO \longrightarrow HCO^+ + H_2$

Guelin+ 1977, Caselli+ 1998

- -> N_H too large to see foreground stars
- -> much smaller electron fraction

 $H_3^+ + CO \longrightarrow HCO^+ + H_2$

similarly, a chain of reactions initiated by

 ${\rm H}_3^+$ and ${\rm HD}\,$ leads to the formation of $\rm DCO^+$

Guelin+ 1977, Caselli+ 1998

- -> N_H too large to see foreground stars
- -> much smaller electron fraction

 $H_3^+ + CO \longrightarrow HCO^+ + H_2$

similarly, a chain of reactions initiated by

 ${\rm H}_3^+$ and ${\rm HD}\,$ leads to the formation of $\rm \ DCO^+$

Guelin+ 1977, Caselli+ 1998

issues:

- -> N_H too large to see foreground stars
- -> much smaller electron fraction

 $\mathrm{H}_3^+ + \mathrm{CO} \longrightarrow \mathrm{HCO}^+ + \mathrm{H}_2$

similarly, a chain of reactions initiated by

 ${\rm H}_3^+$ and ${\rm HD}\,$ leads to the formation of $\rm DCO^+$

Reaction			Reaction rate $[cm^3 s^{-1}]$	
No. 1	$CR + H_2$	$\xrightarrow{\zeta}$	$H_2^+ + e^-$	$\zeta [s^{-1}]$
No. 2	$H_{2}^{+}+H_{2}$	$\stackrel{k_{\mathrm{H}_{2}^{+}}}{\rightarrow}$	$H_{3}^{+} + H$	$k_{\rm H_2^+} = 2.1 \ 10^{-9}$
No. 3	$H_3^+ + CO$	$\xrightarrow{k_{\mathrm{H}}}$	$HCO^+ + H_2$	$k_{\rm H} = 1.61 \ 10^{-9}$
No. 4	$HCO^+ + e^-$	$\stackrel{\beta'}{\rightarrow}$	CO + H	$\beta' = 2.8 \ 10^{-7} \left(\frac{T}{300}\right)^{-0.69}$
No. 5	$H_3^+ + e^-$	$\xrightarrow{\beta}$	H + H + H	$\beta = 4.36 \ 10^{-8} \left(\frac{T}{300}\right)^{-0.52}$
			$H_2 + H$	$+2.34\ 10^{-8}\left(\frac{T}{300}\right)^{-0.52}$
No. 6	H + H	$\xrightarrow{k'}$	H_2	$k' = 4.95 \ 10^{-17} \left(\frac{T}{300}\right)^{0.50}$
No. 7	$H_3^+ + HD$	$\stackrel{k_{\mathrm{f}}}{\underset{\nu^{-1}}{\rightleftharpoons}}$	$H_2D^+ \hspace{0.1 cm} + H_2$	$k_{\rm f} = 1.7 \ 10^{-9}$
		۴f		$k_{\rm f}^{-1} = k_{\rm f} \ {\rm e}^{-220/T}$
No. 8	$H_2D^+ + CO$	$\xrightarrow{k_{\mathrm{D}}}$	$DCO^+ + H_2$	$k_{\rm D} = 5.37 \ 10^{-10}$
No. 9	$DCO^+ + e^-$	$\stackrel{\beta'}{\rightarrow}$	CO + D	$\beta' = 2.8 \ 10^{-7} \left(\frac{T}{300}\right)^{-0.69}$
No. 10	$H_2D^+ + e^-$	$\xrightarrow{k_{e}}$	H + H + D	$k_{\rm e} = 4.38 \ 10^{-8} \left(\frac{T}{300}\right)^{-0.50}$
			$H_2 + D$	$+1.20\ 10^{-8}\left(\frac{T}{300}\right)^{-0.50}$
			HD + H	$+4.20\ 10^{-9}\left(\frac{T}{300}\right)^{-0.50}$
No. 11	H + D	$\xrightarrow{k''}$	HD	$k^{\prime\prime} = \sqrt{2}k^{\prime}$
No. 12	$H_2D^+ + CO$	$\stackrel{k'_{\mathrm{D}}}{\rightarrow}$	$HCO^+ + H_2$	$k'_{\rm D} = 1.1 \ 10^{-9}$
No. 13	$H_{3}^{+} + D$	$\stackrel{k'_{\rm f}}{\underset{\nu'^{-1}}{\rightleftharpoons}}$	$H_2D^+ + H$	$k_{\rm f}' = 1.0 \ 10^{-9}$
		۴f		$k_{\rm f}^{\prime -1} = k_{\rm f}^{\prime} {\rm e}^{-632/T}$
No. 14	$\rm CO^+ + HD$	$\stackrel{k_{\rm CO^+}}{\rightarrow}$	$DCO^+ + H$	$k_{\rm CO^+} = 7.5 \ 10^{-10}$

HCO+/DCO+: emission lines (mm -> IRAM)

emission lines -> no need of a foreground star

Guelin+ 1977

HCO+/DCO+: emission lines (mm -> IRAM)

HCO+/DCO+: emission lines (mm -> IRAM)

CR ionization rate in isolated MCs

CR ionization rate in isolated MCs

compilation of data from Padovani+ 2009

Pioneering studies

Pioneering studies

CR spectrum in the ISM

uncertainties in the background CR spectrum

CR spectrum in the ISM

uncertainties in the background CR spectrum

mainly ionization losses

Padovani+ 2009, Phan+ 2018

CR penetration into MCs (II)

interstellar medium

molecular cloud

CR penetration into MCs (II)

interstellar medium

molecular cloud

Skilling&Strong 1976, Cesarsky&Völk 1978, Morfill 1982, Everett&Zweibel 2010, Morlino&Gabici 2015

CR penetration into MCs (II)

Skilling&Strong 1976, Cesarsky&Völk 1978, Morfill 1982, Everett&Zweibel 2010, Morlino&Gabici 2015

Skilling&Strong 1976, Cesarsky&Völk 1978, Morfill 1982, Everett&Zweibel 2010, Morlino&Gabici 2015

what is the role of streaming instability?

Skilling&Strong1976 Morlino&Gabici 2015

CR flux into the cloud ->
$$D\frac{\partial J}{\partial x}$$

$$D\frac{\partial f}{\partial x}|_{x_c} + V_A f(x_c)$$

what is the role of streaming instability?

Skilling&Strong1976 Morlino&Gabici 2015

CR flux into the cloud ->

$$D\frac{\partial f}{\partial x}|_{x_c} + V_A f(x_c)$$

$$\approx D \; \frac{f_0 - f_c}{L_g} + V_A f_c$$

what is the role of streaming instability?

Skilling&Strong1976 Morlino&Gabici 2015

CR flux into the cloud ->

$$D\frac{\partial f}{\partial x}|_{x_c} + V_A f(x_c)$$

$$\approx D \; \frac{f_0 - f_c}{L_g} + V_A f_c \; \approx V_A f_0$$

what is the role of streaming instability?

Skilling&Strong1976 Morlino&Gabici 2015

CR flux into the cloud ->

$$D\frac{\partial f}{\partial x}|_{x_c} + V_A f(x_c)$$

$$\approx D \; \frac{f_0 - f_c}{L_g} + V_A f_c \; \approx V_A f_0$$

does NOT depend on streaming instability

what is the role of streaming instability?

Skilling&Strong1976 Morlino&Gabici 2015

condition: L_g < field coherence length

CRs into MCs: universal spectrum

solution -> flux into both sides of the cloud

equal to the flux down-ward in momentum

 $\frac{2f_0 V_A}{L_c} \frac{\partial}{\partial p} \left[\dot{p} \ p^2 f_c \right]$

Morlino&Gabici 2015

Morlino&Gabici 2015

Voyager probes

10-1

10

Energy (MeV/nuc)

100

1000

10-1

10

Energy (MeV/nuc)

100

1000

An epic journey

flux into the cloud $2f_0V_A$ equal to the flux down in p $\frac{L_c}{p^2}\frac{\partial}{\partial p}\left[\dot{p} \ p^2 f_c\right]$

waves

Phan+ 2018, Morlino&Gabici 2015

Phan+ 2018, Morlino&Gabici 2015

Phan+ 2018, Morlino&Gabici 2015

Phan+ 2018, Morlino&Gabici 2015
Differential ionisation rates

 $\vdash - \blacksquare$

Phan+ 2018

Differential ionisation rates

most of the ionisation —> MeV < E < GeV

 $\vdash - \blacksquare$

Phan+ 2018

Comparison with data (???)

Comparison with data (???)

So?

O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) —> the flux balance argument seems quite solid...

E (eV)

- O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) —> the flux balance argument seems quite solid...
- Non-homogeneous distribution of MeV CRs in the Galaxy? (see Cesarsky 1975 for a 10⁻¹ pioneering work)

So?

- O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) —> the flux balance argument seems quite solid...
- Non-homogeneous distribution of MeV CRs in the Galaxy? (see Cesarsky 1975 for a pioneering work)
 CR acceleration inside molecular clouds?
 - (turbulence -> Dogiel+,
 - protostars —> Padovani+)

So?

O More refined model? (better description of transition from hot to neutral medium, time dependence induced by turbulence?) -> the flux balance 10¹² Protons in the LISM argument seems quite solid... Maxwellian: $n = 0.1 \text{ cm}^{-3}$; $v = 26 \text{ km s}^{-1}$; T = 8500 K1011 Non-homogeneous distribution 10¹⁰ o V1 CRS 12/342-15/181 of MeV CRs in the Galaxy? 10⁹ Leaky-box model LIS 10⁸ (see Cesarsky 1975 for a 107 pioneering work) 10⁶ sr MeV)⁻¹ 10⁵ **O** CR acceleration inside 2016 $J=4.40e-03 E^{-1.5} e^{(-E/0.2)}$ 10⁴ molecular clouds? sec 10³ Intensity (cm² (turbulence -> Dogiel+,10² Cummings+ 10¹ protostars -> Padovani+) 10⁰ Hidden (very low energy) 10⁻¹ 10-2 component in the CR spectrum? 10^{-3} 10-4 10⁻⁵ 10-6

> $10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}10^{4}10^{5}10^{6}$ Energy (MeV)

A cosmic ray carrot?

Recchia+ 2018

A cosmic ray carrot?

So?

Montmerle 1979

SuperNovae

OB associations

tentative spatial association between SNOBs and COS B hot spots

Montmerle 1979

SuperNovae

OB associations

tentative spatial association between SNOBs and COS B hot spots

Montmerle 1979

SuperNovae

OB associations

tentative spatial association between SNOBs and COS B hot spots

Montmerle 1979

SuperNovae

OB associations

tentative spatial association between SNOBs and COS B hot spots

(a)

SNR/MC associations in y-rays

Blandford&Cowie 1982, Aharonian+ 1994, Bykov+ 2000, Uchiyama+ 2010

shock/MC interaction

Blandford&Cowie 1982, Aharonian+ 1994, Bykov+ 2000, Uchiyama+ 2010

shock/MC interaction

Blandford&Cowie 1982, Aharonian+ 1994, Bykov+ 2000, Uchiyama+ 2010

Blandford&Cowie 1982, Aharonian+ 1994, Bykov+ 2000, Uchiyama+ 2010

Interaction versus escape: who's who?

Vaupré, Hily-Blant, Ceccarelli, Dubus, SG, Montmerle (2014)

Vaupré, Hily-Blant, Ceccarelli, Dubus, SG, Montmerle (2014)

W28

Vaupré et al 2014

Vaupré et al 2014

Vaupré et al 2014

W51*C*

color -> TeV gamma-rays (MAGIC) green -> CO

SiO emission->slow shock->shock-clump interaction?->downstream of SNR shock

age ~ 3×10^4 yr, evidence of shocked cloud material, clumps

age ~ 3×10^4 yr, evidence of shocked cloud material, clumps

age ~ 3×10^4 yr, evidence of shocked cloud material, clumps

CR ionization rate in MCs next to SNRs

W28: cosmic rays or X-rays?

W28: cosmic rays or X-rays?

W28: cosmic rays or X-rays?

proton spectrum $f_{\rm CR} \propto p^{-2.8}$ gammas produced by protons of energy $E\gtrsim 1~{
m GeV}$

fit with a

Conclusions (?)

Conclusions (?)

Conclusions (?)

Another thing we don't understand: Spallogenic nucleosynthesis of Li-Be-B

e.g. Parizot 2000, for a review see Tatischeff&Gabici 2018

Another thing we don't understand: Spallogenic nucleosynthesis of Li-Be-B

e.g. Parizot 2000, for a review see Tatischeff&Gabici 2018

Another thing we don't understand: Spallogenic nucleosynthesis of Li-Be-B

e.g. Parizot 2000, for a review see Tatischeff&Gabici 2018

(Real) conclusions

