What drives the non-linear growth of supermassive black holes in galaxies?

Marie Skłodowska-Curie Actions

OAS Astrophysical Colloquium May 7th, 2020

> Ivan Delvecchio (Marie Curie Fellow at CEA-Saclay)

> > ivan.delvecchio@cea.fr

D19+, ApJL, 885, 36

On behalf of:

E. Daddi, F. Shankar, J.R. Mullaney, G. Zamorani, J, Aird, E. Bernhard, A. Cimatti, D. Elbaz, M. Giavalisco, L.P. Grimmett

Supermassive black hole

 $M_{\rm BH} = 10^6 - 10^{10} \; M_{\rm Sun}$

BH sphere of influence

Mind the gap

Galaxies and SMBHs know each other

Magorrian (1998); Ferrarese & Merritt (2000); Marconi & Hunt (2003); Haring & Rix (2004); Gultekin et al. (2009); Kormendy & Ho (2013)

 Black hole masses correlate with various properties of "classical bulges":

- stellar velocity dispersion $\sigma_{\!*}$
- bulge mass (<1:200)
- bulge luminosity

Galaxies and SMBHs know each other

Magorrian (1998); Ferrarese & Merritt (2000); Marconi & Hunt (2003); Haring & Rix (2004); Gultekin et al. (2009); Kormendy & Ho (2013)

- At z~0 bigger galaxies contain bigger black holes.
- But nearly all today's BHs are quiescent...
- Possible imprinting of a past AGN/galaxy co-evolution epoch?

Looking back in time: statistical (co-)evolution

The total luminosity density produced via <u>BH_accretion</u> and <u>star formation</u> peaked at 1<z<3 and declined towards z=0.

Why?

Madau & Dickinson (2014)

What fuels galaxy and BH growth?

What fuels galaxy and BH growth?

Feeding BH growth via gas accretion

BHAR

BHAR $\propto (1-\epsilon)/\epsilon \cdot Lx$ ϵ : radiative efficiency [0.06:0.42] ~ 0.1

Quasars

Low-Luminosity AGN

Feeding SF via gas accretion

Schmidt-Kennicutt law (Schmidt 1959, Kennicutt 1998)

 $\Sigma_{SFR} = (2.5 \pm 0.7) \times 10^{-4} \left(\frac{\Sigma_{gas}}{1 \ M_{\odot} \ pc^{-2}}\right)^{1.4 \pm 0.15} M_{\odot} \ yr^{-1} \ kpc^{-2}$

"Star forming" *main-sequence* (MS): - Tight correlation (scatter ~ 0.3 dex)

Roughly 85-90% of the global star formation history (Sargent et al. 2012)
Star formation driven by stochastic gas accretion (Dekel et al. 2009; Ciotti et al. 2010).

(Noeske et al. 2007; Elbaz et al. 2011; Whitaker et al. 2012; Speagle et al. 2014; Schreiber et al. 2015; Scoville et al. 2017 etc).

Feeding vs Feedback self-regulation

Gas feeding

<u>Stellar/AGN</u> <u>feedback</u>

Feeding vs Feedback self-regulation

Gas feeding

<u>Stellar/AGN</u> <u>feedback</u>

BH accretion rate (BHAR)

Star formation rate (SFR)

Linear or non-linear growth?

Volonteri (2010)

Harrison et al. (2017)

Have BHs and galaxies followed a symbiotic growth over cosmic time?

BH accretion rate (BHAR)

Star formation rate (SFR)

Linear or non-linear growth?

Volonteri (2010)

Harrison et al. (2017)

Studying the relationship between **BHAR** and **SFR** at various epochs

BH accretion rate (BHAR)

Star formation rate (SFR)

 From GOODS-S to COSMOS (more statistics): at z=2 the BHAR/SFR ratio increases with M_{*} (Rodighiero et al. 2015)

- From GOODS-S to COSMOS (more statistics): at z=2 the BHAR/SFR ratio increases with M_{*} (Rodighiero et al. 2015)
- X-ray stacking and Bayesian modeling over a larger M_{*}-z range (Yang et al. 2018; Aird et al. 2018, 2019; Carraro et al. 2020)

- From GOODS-S to COSMOS (more statistics): at z=2 the BHAR/SFR ratio increases with M_{*} (Rodighiero et al. 2015)
- X-ray stacking and Bayesian modeling over a larger M_* -z range (Yang et al. 2018; Aird et al. 2018, 2019; Carraro et al. 2020)
- Independent constraints from modeling the observed X-ray AGN luminosity function in MS galaxies (Delvecchio et al. 2020)

The BHAR/SFR ratio increases with M_*

- From GOODS-S to COSMOS (more statistics): at z=2 the BHAR/SFR ratio increases with M_{*} (Rodighiero et al. 2015)
- X-ray stacking and Bayesian modeling over a larger M_* -z range (Yang et al. 2018; Aird et al. 2018, 2019; Carraro et al. 2020)
- Independent constraints from modeling the observed X-ray AGN luminosity function in MS galaxies (Delvecchio et al. 2020)

BHAR/SFR $\propto M_*^{0.73 \pm 0.25}$

Redshift-independent, at least since $z\sim3$

What are the implications for the assembly of BH scaling relations?

 We assumed a uniform distribution of BH and galaxy seeds at z=10 (arbitrary)

 $10^6 < M_* < 10^{10} M_{sun}$

 10^2 < $M_{\rm BH}$ < $10^6~M_{\rm Sun}$

 We assumed a uniform distribution of BH and galaxy *seeds* at z=10 (arbitrary)

Galaxy **M**_{*} evolves on the main sequence (Schreiber et al. 2015)

Мвн follows the BHAR/SFR trend with M_{*}

Bigger galaxies: the BH grows super-linearly via gas accretion along with its host

Smaller galaxies: the BH lags behind the host. SN-driven feedback halts BH growth

Bigger galaxies: the BH grows super-linearly via gas accretion along with its host

Smaller galaxies: the BH lags behind the host. SN-driven feedback halts BH growth

Bigger galaxies: the BH grows super-linearly via gas accretion along with its host

Smaller galaxies: the BH lags behind the host. SN-driven feedback halts BH growth

Bigger galaxies: the BH grows super-linearly via gas accretion along with its host

Smaller galaxies: the BH lags behind the host. SN-driven feedback halts BH growth

Bigger galaxies: the BH grows super-linearly via gas accretion along with its host

Smaller galaxies: the BH lags behind the host. SN-driven feedback halts BH growth

All galaxies are placed on the final relation ($M_{BH} \propto M_*^{1.7}$). Today's $M_{BH} - M_*$ relation was already in place several Gyrs ago

Agreement with hydro and cosmological simulations:

Despite different BH seeds and redshifts, the twofold trend is there

Comparison with local MBH - M_* relations

 Low-mass AGN sample with virial BH masses (Reines & Volonteri 2015)

- Low-mass AGN sample with virial BH masses (Reines & Volonteri 2015)
- Dynamical M_{BH} M_{bulge} (Kormendy & Ho
 2013) converted to M_{BH} M_{*}
 (inactive classical bulges)

- Low-mass AGN sample with virial BH masses (Reines & Volonteri 2015)
- Dynamical MBH Mbulge (Kormendy & Ho
 2013) converted to MBH M_{*}
 (inactive classical bulges)
- MBH M_{*} corrected for selection
 biases (Shankar et al. 2016, 2019)

- Low-mass AGN sample with virial BH masses (Reines & Volonteri 2015)
- Dynamical MBH Mbulge (Kormendy & Ho
 2013) converted to MBH M_{*}
 (inactive classical bulges)
- MBH M_{*} corrected for selection
 biases (Shankar et al. 2016, 2019)

- Low-mass AGN sample with virial BH masses (Reines & Volonteri 2015)
- Dynamical MBH Mbulge (Kormendy & Ho
 2013) converted to MBH M_{*}
 (inactive classical bulges)
- MBH M_{*} corrected for selection
 biases (Shankar et al. 2016, 2019)

Radiative efficiency: we assumed ε=0.1BHAR $\propto (1-\epsilon)/\epsilon \cdot L_X$ but no ε~[0.06:0.42] would fill the gap

- Low-mass AGN sample with virial BH masses (Reines & Volonteri 2015)
- Dynamical MBH Mbulge (Kormendy & Ho
 2013) converted to MBH M_{*}
 (inactive classical bulges)
- MBH M_{*} corrected for selection
 biases (Shankar et al. 2016, 2019)

<u>Compton Thick AGN:</u> Constrained by the cosmic XRB (≤ 2x boost, Comastri et al. 2015)

- Low-mass AGN sample with virial BH masses (Reines & Volonteri 2015)
- Dynamical M_{BH} M_{bulge} (Kormendy & Ho
 2013) converted to M_{BH} M_{*}
 (inactive classical bulges)
- MBH M_{*} corrected for selection
 biases (Shankar et al. 2016, 2019)

Dynamical $M_{BH} - M_{bulge}$ relations, if not biased, do not apply to normal MS galaxies

And the leading actor is...

SPECULATION

 The M_{*} drives the super-linear BH growth, but BHAR/SFR does not display a twofold behavior

SPECULATION

- The M_{*} drives the super-linear BH growth, but BHAR/SFR does not display a twofold behavior
- When converting to MDM (Behroozi et al. 2019), the BHAR/SFR shows a strikingly twofold trend with MDM

SPECULATION

SN-driven feedback hampers BH growth

- The M_{*} drives the super-linear BH growth, but BHAR/SFR does not display a twofold behavior
- When converting to MDM (Behroozi et al. 2019), the BHAR/SFR shows a strikingly twofold trend with MDM

SPECULATION

- The M_{*} drives the super-linear BH growth, but BHAR/SFR does not display a twofold behavior
- When converting to MDM (Behroozi et al. 2019), the BHAR/SFR shows a strikingly twofold trend with MDM

Large halos (MDM > 10^{12} Msun):

replenishing the galaxy gas content via streams and inflows of pristine gas (Dekel et al. 2009) fueling both BH accretion and SF in a similar fashion

SPECULATION

Take-home points

BHs and galaxies do *not* grow in lockstep at all times. Our work favors the *adjustement* of BH growth driven by the available galaxy's gas content

...possibly regulated by the DM halo mass

Our empirical trend agrees with intrinsic relations at z=0 and with cosmological simulations at high/low redshift

Dynamical BH scaling relations, if not biased, do not hold for MS galaxies

