Present and past activity at the Galactic center

European Research Council

Gabriele Ponti INAF OA Brera - MPE

How do galaxies evolve?

The Baryon cycle

AGN - Starbursts influence CGM

Starburst

Outstanding progress

→ Understand feedback between nuclear activity and CGM

MS 0735.6+7421: Chandra/Hubble/VLA

AGN

Do galaxies influence their CGM?

Quiescent galaxy

Does the nuclear activity of quiescent galaxies influence their CGM?

Let's look to the Milky Way

M83: Subaru/ESO/Hubble

The structure of the Milky Way

From Spitzer/GLIMPSE data Churchwell +09

The central degrees of the Milky Way

Molinari+11

Abundant gas reservoir ~3×10⁷ M_{Sun}

Peculiar environment: forming stars at extremely low rate (10 times lower than expected)

Nevertheless → Mini starburst

The Central Molecular Zone in X-rays

More than 100 EPIC observations

Exposure > 1.5 Ms (central 15') > 200 ks in the plane

The Central Molecular Zone in X-rays

More than 100 EPIC observations

Exposure > 1.5 Ms (central 15') > 200 ks in the plane

Sgr A*'s emission during X-ray flares?

Best target to study low luminosity accretion

First NIR and X-ray spectrum of a flare

Clouds: mirrors of past activity

Clouds as X-ray mirrors

Are clouds reflecting Sgr A* radiation?

Puzzling result: constant FeKα emission

Super-luminal echo -> clouds as mirrors

XMM: Fe K α emission

Some recent major results

Terrier+18

All Fe K α bright regions are variable

See also Ponti+10;+13;+14; Clavel+13;+14; Yusef-Zadeh+13a,b;+19; Marin+14; Koyama+14;+18; Zhang+15; Mori+15; Nobukawa+15; +16; Walls+16; Krivonos+14;+17; Churazov+17a,b,c; Chuard+18; Chernyshov+18; Kuznetsova+19; Di Gesu+20; Khabibullin+20a,b

Future prospects: X-ray polarisation!

See also Ponti+10;+13;+14; Clavel+13;+14; Yusef-Zadeh+13a,b;+19; Marin+14; Koyama+14;+18; Zhang+15; Mori+15; Nobukawa+15; +16; Walls+16; Krivonos+14;+17; Churazov+17a,b,c; Chuard+18; Chernyshov+18; Kuznetsova+19; Di Gesu+20; Khabibullin+20a,b

Although 10⁶ times brighter -> No influence on CGM

Distribution of remnants and outflows

ii S xv Ar xvii		ATLAS OF DIFFUSE X-RAY EMITTING FEATURES				
	Name	Other name	Coordinates (l, b)	Size arcsec	References	
	STAR CLUSTERS:		250.040 0.515	0.00		
	Central star cluster		359.9442, -0.046	0.33	45,116,117,118	
	Quintuplet		0.1604, -0.0591	0.5	1,63,11	
	Arches	G0.12+0.02	0.1217,0.0188	0.7	1,2,3,4,5,6,7,8,9,39,40,11	
	Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,63,11	
	Sh2-17 DB00-05	DB00-58 G0 33-0 18	0.0013, 0.1588	1.65	13,63,11	
	SND BUBBLES S		0.01-0.19	0.4		
	G350 0.0 0	G358 5-0 0 - G350 1-0 0	359.03 -0.96	26×20	X-P 48 51 75 76 81 110 120	
	G359.07-0.02	G350.0-0.9 - G359.1-0.9	359.03-0.90	20 X 20 22 X 10	D 14 48 51 66	
	033707-002	G359 12-0.05	359.07-0.02	24×10 24×16	Y 66	
	G359 10-0 5	035912-005	359.12-0.051	24 × 10	X-D 37 48 51 56 74 75 81 120 121	
	G359.41-0.12		359.41 -0.12	35 4 50	X-K 57,40,51,00,74,75,01,120,121 X 14	
	Chimney		359.46 ±0.04	68 4 2 2	X 14	
	G350 73-0 35+		359.73 -0.35	0.0 X 2.3	X 14 X 58	
	G359.73-0.09	Superhubble	359.84 -0.14	20 \ 16	X 15 16 17 58	
	0337.11-0.07	G359 79-026h	359.04,-0.14	20 × 10 8 × 5.2	X 15,10,17,58	
	20	G0.0.0.16++	0.00.016	0 1 0.2	X This work	
	G359 87+0 44	Cana	350 87 ±0 44	11 × 5	D 42	
	0339.8/+0.44	Cane G350 85±0 30	339.0/,+0.44	11 × 5	IS 40	
	20ng Sar A**s labor	0.59.65+0.59	359.94 -0.04	5.99	P 32 33 34 17	
	C350 02-0.00+	Parachuta - C350 02 0 07	359.94, -0.04	0.00	R 32,33,34,17 D 35 38 43 47 58 60 61	
	633992-0.091	Parachute - 0559.93-0.07	250.062 0.052	1 2 2 2 2 2 2	K 55,58,45,47,58,00,61	
	Sgr A East	Are Bubble	559.905, -0.055	0.2 X 2.0	A-K 3,18,19,20,48,73,81	
	60.1-0.1	Arc Bubble	0.109,-0.108	13.0 X 11	X This work	
	00.004.0.000	G0.13,-0.120	0.13,-0.12	3 X 3	X1/	
	G0.224-0.032	C0.2+0.0	0.224,-0.032	2.3×4.6	X This work	
	GU.30+0.04	G0.3+0.0 G0.34+0.05	0.34,+0.045	14×8.8	K 21,48,51,81,82	
		G0.33+0.04				
	G0.40-0.02	Suzaku J1746.4-2835.4 G0.42-0.04	0.40,-0.02	4.7 imes 7.4	X 22	
	G0.52-0.046		0.5190.0460	2.4×5.1	This work	
	G0.57-0.001		0.57-0.001	1.5×2.9	This work	
	G0.57-0.018+	CXO J174702.6-282733	0.570,-0.018	0.2	X 23,24,58,59,68,80	
	G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2 imes 4.8	X 22,65,79	
	G0.9+01♡	SNR 0.9+0.1	0.867,+0.073	7.6 imes7.2	R 25,26,27,28,29,48,75,81,82	
	DS1	G1.2-0.0	1.17,+0.00	3.4×6.9	X 31	
	Sgr D SNR	G1.02-0.18	1.02,-0.17	10×8.0	R 30,31,48,51,75,77,81,82	
		G1.05-0.15				
		G1.05-0.1				
Dogoible influence			10	10×10	R 73,81,82	
ssiple influenc						
		_				
Evd 0-4 ym-1	-	→ Power	່ ning ou	utflov	ws to	

 $3.5 \times 10^{-4} \text{ yr}^{-1} < \text{SN rate} < 15 \times 10^{-4} \text{ yr}^{-1}$

Massive kinetic energy input > 1.1×10⁴⁰ erg s⁻¹

→ Powering outflows to Galactic center lobe?

Law +11; Crocker +11; 12; Yoast-Hull +14; Jouvin +15

Discovery of high latitude hot plasma

What is this?

Galactic center radio lobe

What is the origin of this hot plasma?

Base of Galactic wind? Crocker +12

Past Sgr A*'s AGN-like activity? Bland-Hawthorn & Cohen 03

Extensive X-ray scan

Ponti +15

AFGL:5376

ESA News/XMM-Newton/G. Ponti 2019, Nature

1.5-2.6 keV 2.35-2.56 S xv 2.7-3.0 keV

Base of gamma ray bubble

Hot outflow Northern chimney

Galactic plane ·

Flow molecular matter

Sagittarius A'

~160 light years

→ Measure kT, n, p, abundances of hot plasma

The radio view of the Chimneys

Multi-phase multi-epoch Galactic outflow

Hot plasma (X-rays) warm dust (mid-IR) → Coherent features shocks (radio)

→ Deeply interconnected and linked to the Galactic outflow

→ Strong shocks at the chimney-ISM interface (radio + shorter-lived dust emission)

→ AFGL 5376 > 0.1 kpc molecular shock Uchida+94

Large scale cold Galactic outflow

Small scale molecular Galactic outflow

Molecular outflow detected tens of parsec from Sgr A*

Multi-phase multi-epoch Galactic outflow

Hot plasma (X-rays) warm dust (mid-IR) → Coherent features shocks (radio)

→ Deeply interconnected and linked to the Galactic outflow

→ Strong shocks at the chimney-ISM interface (radio + shorter-lived dust emission)

- → AFGL 5376 > 0.1 kpc molecular shock
- → Multi-phase (hot, molecular, warm-diffuse)
- → Multi-scale and multi-epoch outflow

Multi-phase multi-epoch Galactic outflow

 Hot plasma (X-rays) warm dust (mid-IR) → Coherent features on > 10² pc scales
Deeply interconnected and linked to the Galactic outflow
→ Strong shocks at the chimney-ISM interface (radio + shorter-lived dust emission)
→ AFGL 5376 > 0.1 kpc molecular shock
→ Multi-phase (hot, molecular, warm-diffuse)
→ Multi-scale and multi-epoch outflow

- → Vertical (dominant? B~0.1-1 mG) magnetic field diverging beyond |b|~0.5°
- → Hot (X-ray) plasma cannot drive outflow Relic? Dark? outflow

What we do not understand:

Origin of protrusion? Why not perfectly symmetric? Relic outflow? Dark outflow? AGN driven? Starburst?

The channel feeding the Fermi bubbles

Does have an effect on CGM!

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

eROSITA (Spektr-RG)'s launch Baikonur, July 13th, 2019

Source: Roscosmos

Map the flows of hot Galactic European Research Council Baryons European Research Council

European Research Council

Inner outflow

outer inflow?

Global outflow?

Milky Way center

Fountains?

Chaotic flow?

How can a super-luminal echo happen?

Velocity observed on the screen 1m/1s

Wall distant 1 m

e.g. Ponti +10;+13

How can a super-luminal echo happen?

