Estimating the lifetime of extragalactic magnetized hot cavities

Fabio Del Sordo

INAF - Catania Institute of Astrophysics, FORTH Crete <u>fabio.delsordo@inaf.it</u>

with Simon Candelaresi

INAF-OAS online seminar, 27 October 2020

Candelaresi S. & Del Sordo F., ApJ, 896 86C, 2020

Extragalactic bubbles

Fermi bubbles

Su et al., ApJ 2010

Fermi bubbles

Gamma-ray emissions

X-ray emissions

Milky Way

Kelvin-Helmoltz instability shall disrupt raising bubbles 50,000 light-years

Sun

Credits: NASA's Goddard Space Flight Center

The possible role of helical magnetic fields

Can helical magnetic fields act against the disruption of extragalactic bubbles?

The possible role of helical magnetic fields

Can helical magnetic fields act against the disruption of extragalactic bubbles?

Can magnetic helicity make extragalactic structures more stable?

The possible role of Magnetic Helicity

Conservation of magnetic helicity:

 $\lim_{\eta \to 0} \frac{\partial}{\partial t} \int \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d} V = 0 \qquad \eta = \mathsf{magnetic resistivity}$

Realizability condition:

Magnetic energy is bound from below by magnetic helicity.

Numerical setup

Full resistive magnetohydrodynamics simulations with the PencilCode.

 $\frac{\partial \mathbf{A}}{\partial t} = \mathbf{U} \times \mathbf{B} + \eta \nabla^2 \mathbf{A}$

$$\frac{\mathrm{D}\mathbf{U}}{\mathrm{D}t} = -c_{\mathrm{S}}^{2}\nabla\left(\frac{\ln T}{\gamma}\ln\rho\right) + \mathbf{J}\times\mathbf{B}/\rho - \mathbf{g} + \mathbf{F}_{\mathrm{visc}}$$

$$\begin{aligned} \frac{\partial \ln T}{\partial t} &= -\mathbf{U} \cdot \nabla \ln T - (\gamma - 1) \nabla \cdot \mathbf{U} \\ &+ \frac{1}{\rho c_V T} \left(\nabla \cdot (K \nabla T) + \eta \mathbf{J}^2 \\ &+ 2\rho \nu \mathbf{S} \otimes \mathbf{S} + \zeta \rho (\nabla \cdot \mathbf{U})^2 \right) \end{aligned}$$

 $\frac{D \ln \rho}{D t} = -\nabla \cdot \mathbf{U} \qquad \begin{array}{l} \text{stratified medium} \\ \text{hot, under-dense bubble} \end{array}$

Physical units

Numerical experiments

- 0: Hydrodynamic test case
- 1: Hydromagnetic Helical case #1: ABC field
- 2: Hydromagnetic Helical case #2: Spheromak field
- 3: Hydromagnetic Non-Helical case: Vertical field

Magnetic Initial conditions 1: Arnold-Beltrami-Childress field

$$\mathbf{A} = f(r)A_0 \begin{pmatrix} \cos(yk) + \sin(zk) \\ \cos(zk) + \sin(xk) \\ \cos(xk) + \sin(yk) \end{pmatrix}$$

smoothing function: $f(r) = 1 - (r/r_{
m b})^{n_{
m smooth}}$

inside bubble: $abla imes {f A} pprox {f A} pprox k{f A}$

 $\stackrel{\longrightarrow}{\longrightarrow} E_{\rm m} \propto A_0^2 k^2$ $\stackrel{\longrightarrow}{\longrightarrow} H_{\rm m} \propto A_0^2 k$ $\stackrel{\longrightarrow}{\longmapsto} \text{Fix magnetic energy, vary magnetic helicity.}$

Magnetic Initial conditions 2: Spheromak field

$$B = 2A_0 \frac{g(\alpha r)}{(\alpha r)^2} \cos(\theta) \hat{e}_r$$
$$-A_0 \frac{g'(\alpha r)}{\alpha r} \sin(\theta) \hat{e}_\theta$$
$$+A_0 \frac{g(\alpha r)}{\alpha r} \sin(\theta) \hat{e}_{\phi}$$

$$lpha= au/r_{
m b}$$

$$g(t) = \frac{t^2}{\tau^2} - \frac{3}{\tau \sin(t)} \left(\frac{\sin(t)}{t} - \cos(t) \right)$$

Magnetic Initial conditions 3: Vertical field

$$\boldsymbol{B}=B_0\boldsymbol{e}_z$$

Initial thermodynamical conditions for all models:

Stably stratified atmosphere with an under-dense hot cavity of spherical shape Adiabatic gas

Models

Model		$\boldsymbol{B}(A_0)$	H _m	Re	ReM
hydro				960)
hydro2				480	0
hel_1		0.025	1	u d 128	0 4200
hel_h	$\beta \approx 0.6$	0.1	4	$\operatorname{Re} = \frac{u_{\max} u}{128}$, 128	0 4200
hel_l2	$\rho \sim 0.0$	0.025	1	v 560	0 3700
hel_h2		0.1	4	$R_{ex} = \frac{u_{max}d}{640}$	0 4200
sph_l	$\beta = 0.038$	6.39	1	$Rc_{\rm M} = \frac{\eta}{\eta}$, 720	0 4800
sph_h	$\beta = 0.44$	1.7	4	1100	00 7500
ex_low	$\beta = 20$	0.2	0	320	0 1000
ex_high	$\beta = 1.25$	0.8	0	320) 1000

All magnetic cases have about the same magnetic energy

B min
$$B_0 = 2.5 \times 10^{-6} \text{ G}$$

B max $B_0 = 6.39 \times 10^{-4} \text{ G}$

$$\beta = \min\left(\frac{2(R\rho T/\mu)}{B^2}\right)$$

14

Evolution of Temperature distribution

> Models: Hydro hel_l hel_h

ABC field

Results: ABC field

Temperature distribution at final time

Hydro Models: hel_l hel_h

Results: ABC field

Results: ABC field

E

Emission measure at final time

$$E(x, z) = \int T^4 \, \mathrm{d} y$$

Energy spectra

Cavities' Coherence

z vector in the cavity z of center of mass
Mean height
of the cavity
$$z_{mean} = \langle |z_{cavity} - z_{CM}| \rangle$$

Results

Models	Disruption time	
	(Myrs)	
Hydro	$t \sim 80$	
hel_1	$t \sim 80$	
hel_h	$t \sim 220$	
ex_low (B	$t = 0.2$) $t \sim 150$	
ex_high (B	s=0.8) $t>250$	

Results

Models	Disruption time
	(Myrs)
Hydro	$t \sim 80$
hel_1	$t \sim 80$
hel_h	$t \sim 220$
ex_low (B=0	(1.2) t ~ 150
ex_high (B=0	0.8) $t > 250$

Unstable to Kelvin-Helmoltz

$$B^{2} \ge 2\pi (u_{1} - u_{2})^{2} (\rho_{1}\rho_{2}) / (\rho_{1} + \rho_{2})$$

(Chandrasekhar 1961)

Threshold $B \sim 0.56$ for our models

Results

Questions:

Do surface currents play a role?

Does the initial geometry play a role?

No current effects

25

Currents at t = 0 y=0for the ABC field case

Different initial B: Spheromak

Temperature distribution and Emission measure at final time Models: Hydro, sph_l, sph_h

Different initial B: Spheromak

Conclusions

- Hydro cases show stability for about 80 Myrs, with increase of 50% of coherence measure
- Helical fields of the order of 10⁻⁵G can stabilize extragalactic buoyant bubbles for about 250 Myrs
- Results do not depend on B field initial geometry
- Vertical magnetic fields required for bubble stabilization are much higher (about 10^{-4} G)

Conclusions

- Hydro cases show stability for about 80 Myrs, with increase of 50% of coherence measure
- Helical fields of the order of 10⁻⁵G can stabilize extragalactic buoyant bubbles for about 250 Myrs
- Results do not depend on B field initial geometry
- Vertical magnetic fields required for bubble stabilization are much higher (about 10^{-4} G)

Grazie!