

FONDECYT Fondo Nacional de Desarrollo Científico y Tecnológico

Astrophysics Talk UniBo The near-infrared view of the BLR and the effect of obscuration in BLR characterisation of local hard X-ray selected AGN

F. Ricci

E. Treister, F. E. Bauer, J. Mejia-Restrepo, C. Ricci, E. Sani and BASS collaboration

Why study BLR?

1. Understanding the structure (geometry/dynamics) of the material in the proximity of the BH, eventually feeding the BH

to the high redshift Universe

2. Measure the supermassive black hole masses up

Weighting the SMBH inside an AGN

Reverberation mapping: time-resolution

If the BLR is powered by photoionization, it is virialized and the motion is dominated by the gravity of the central compact object

ionizing flux from the accretion disk

- $M_{\rm RM} = \frac{V_{\rm vir}^2 R}{G} = f \frac{W^2 R}{G}$ Measure the time lag in response of BLR clouds to changing
- Substitute spatial resolution with time resolution!

Blandfor & McKee+82; Peterson+93, +04

BLR structure encoded in the virial factor: <f>

AGN are thought to follow the same scaling relations observed in quiescent galaxies with dynamically measured SMBHs. RM AGN seem to reproduce the scaling relation M_{BH} - σ_{\star} once BH masses are scaled for an average virial factor <f> (Onken+04; Woo+10; Graham+11; Park+12; Ho&Kim+14; Grier+13,+17, Batiste+17)

- Do AGN follow the dynamical-based scaling relations? sphere of influence resolution-dependent bias (e.g., Bernardi +07; Gültekin +09; Batcheldor +10; Morabito & Dai +12; Shankar +16)
- Are these relations valid for obscured AGN as well? bulk of AGN population
- Is there a dependence on bulge morphology for active galaxies?

Direct f-factor measurements in RM AGN

The virial factor f can be directly inferred only for a handful (~16) RM broad-line AGN having sufficiently detailed RM data available (Pancoast+14b, Grier+17, Williams+18, Li+18)

The H β emitting BLR is described by a thick disk BLR close to face on emitting preferentially from the far side of the BLR.

Dynamically, the orbits are both inflowing and outflowing.

The f-factor could depend on some AGN properties (Lbol, Edd ratio, M_{BH} or the inclination angle) -> marginal evidence of M_{BH} and inclination dependence

Statistical studies on f

 $\log FWHM_{obs}$

Several works used f-independent Mbh estimates to infer the virial factor and found that there is an anti-correlation between f-FWHM of $H\beta$, Ha, MgII and CIV (Decarli+08, Shen&Ho+14, Mejia-Restrepo+18) which is explained by the fact that the observed FWHM gets broadened with increasing los inclination (e.g., Collin+06)

$$f = \left[4\left(\sin^2 i + (H/R_{\rm BLR})^2\right)\right]^{-1}$$

(for a similar broadening effects on the EW[OIII] see also Risaliti+11, Bisogni+17)

BUT! These works focused only on broad-line sources. What about the BLR in optical narrow line Seyfert 1.8-1.9-2?

$H\alpha$ in low mass BHs

The need of a Near-infrared view

penetrate the obscuring material \rightarrow NIR Paschen lines

- 2. the dust absorption is less severe (~ 10 times) than in the optical (Veilleux+02)
- and are almost unblended (Riffel+06, Landt+08)

In order to have a direct view of the BLR also in obscured systems, we need to

1. NIR observations of high-R and high-S/N have revealed broad Paschen lines in type 2 AGN (Veilleux+97, Riffel+06, Cai+10, Smith+14, Onori+17)

3. Paα and Paβ are the strongest hydrogen emission lines observed in the NIR,

A Mixed virial M_{BH} calibration for AGN

NIR virial relations based on the Paß FWHM (but also Ha, Paa, Hel1.083µm, see Greene&Ho+05; Landt+08; Shen&Liu+12; Mejia-Restrepo+16) and the hard-X $L_{14-195 \text{ keV}}$ therefore able to work with low-L AGN1 and AGN2 Goal: find the BLR in NIR in Sy 1 and Sy 2

F. Ricci+17 (see also Kim+10,+18; La Franca+15; Landt+13)

BASS NIR data

Goals:

- compare NIR and optical (i.e. $H\alpha$) BLR measurements in Sy 1-1.9 to understand systematics/biases in BLR characterization and thus in $H\alpha$ virial-based M_{BH} estimates
- build a statistical obscuration unbiased (=X-ray selected) sample of local 2. Seyferts (Sy 1 and 2) with NIR broad lines to derive NIR+Lx virial based Mbh (using F. Ricci+17 calibration)

$$M(line) = f_0 FWHM(line)^2 L_X^{0.5}$$

$$M_{vir,line}$$

- f0=6.3, <f> to put RM AGN on Kormendy&Ho+13 rel
- FWHM(line) = FWHM Hel1.0830 micron, $Pa\beta$, $Pa\alpha$ or average NIR
- Lx 2-10 keV or 14-195 keV (using the latter)

and thus estimate the virial factor

$$f = \frac{M_{BH,\sigma_{\star}}}{M_{vir,line}}$$

BASS NIR FIRE data + BASS database!

F. Ricci + in prep

Magellan/FIRE

<u>F. Ricci + in prep</u>

Magellan/FIRE

Optical and NIR view of the BLR in Sy 1-1.9

<u>Mejia-Restrepo +in prep</u>

In Sy 1.9 FWHM(H α)-N_H is almost constant up to log Nh~23 cm⁻² The Ha BLR velocities are not underestimated until log N_H <~23 cm⁻².

> The Ha broad line flux is biased, as the Lb(Ha)/LhardX decreases in Sy 1.9 at increasing columns, $\log N_H > 21-22 \text{ cm}^{-2}$

VIR BASS DR1+DR2+FIRE -> FWHM(line), Lx(14-195keV), M(line)
What does the NIR say? \checkmark OPT DR2 -> FWHM(Ha), Lb(Ha), Mbh(Ha)

 \star FWHM(Ha) consistent with FWHM from broad NIR lines

(see also, Landt+08, F.Ricci+17, Lamperti+17, *Onori*+17)

<u>F. Ricci + in prep</u>

The H \propto broad line intensity, i.e. <u>the flux, is the quantity</u> <u>that gets suppressed</u> with increasing obscuration, log N_H >21 cm-2 (consistent with optical results from BASS DR2)

When estimating M_{BH} using Ha, in case of Sy 1.9 or with log $N_H > 21 \text{ cm}^{-2}$, it is better to **NOT use OPTICAL BROAD LINE luminosity** (i.e. no Greene&Ho+05), choose a more unbiased proxy for the BLR radius (like Lx).

The IR broad line luminosities are suppressed at slightly higher $N_{\rm H}$ levels, as expected by dust extinction that becomes less relevant at longer wavelengths

NIR view of the BLR: f

✓ NIR BASS DR1+DR2+FIRE -> FWHM(line), Lx(14-195keV), M(line) ✓ σ★ OPT DR2 -> Mbh, σ★

F. Ricci +in prep

 $M(line) = f M_{vir,line} \Longrightarrow f_0 M_{vir,line}$

$$M_{BH,\sigma_{\star}} \iff M(line)$$

4.0

$$f = \frac{M_{BH,\sigma_{\star}}}{M_{vir,line}} \quad \log f/f_0 = \log \frac{M_{BH,\sigma_{\star}}}{M(line)} = \Delta \log M_{BH}$$

3.8

3.6 3.4 Jog FWHM

3.2

3.0

 The measurements are evenly distributed around the 1:1 relation with some scatter (~0.5-0.65 dex)
 Some of the scatter is driven by FWHM(line): smaller (light color) FWHMs are located above the 1:1 locus while broader lines (darker color) are below
 if FWHM gets broadened with inclination, it is expected an anti correlation between f and FWHM (see e.g. Collin+06, Decarli+08, Shen&Ho+14, Mejia-Restrepo+18, Mediavilla+19, Marculewicz+20)

Does the BH mass difference (i.e. f factor) depend on additional parameters?

17/21

NIR view of the BLR: f/f0 vs z

F. Ricci + in prep

At fixed aperture, with increasing redshift a bigger part of the host bulge is sampled in 1D spectra, possibly producing an increase on the measured stellar velocity dispersion and therefore an enhancement of Mbh, σ_{\star}

- \checkmark no strong gradient of Mbh, σ_{\star} along the x-axis,
- \checkmark some gradient along the y-axis, meaning that at each redshift there is a range of Mbh, σ_{\bigstar}
- \checkmark weak redshift dependence, thus aperture effects should be negligible

NIR view of the BLR: f/f0 vs Nh

F. Ricci +in prep

The offset f/f0 might depend on obscuration, such that, at fixed Mbh, σ_{\bigstar} , the NIR virial-based estimate is biased low.

If that were the case

 \checkmark the sample should exhibit a gradient with M(line) as a function of the X-ray column (lighter the higher the Nh)-> NOT SEEN \checkmark positive correlation between the f/f0 and the column density -> NOT SEEN

NIR view of the BLR: f/f0 vs M(line)

F. Ricci + in prep

The offset f/f0 might depend on Mline. Expected an anti correlation by definition.

 $f \propto M(line)^{-1}$

 \checkmark there is indeed an anti correlation, but the slope is flatter than -1 \checkmark in all cases the slope is statistically \neq -1 (p<1E-7) and \neq 0 (p<4E-3) only for HeI and NIR samples

This anti-correlation might be driven by a more fundamental relation with the FWHM, since

 $M(line) \propto FWHM(line)^2$

Take home messages

- 1. FWHM measured from Hα and near-infrared lines are consistent in Sy 1 up to Sy 1.9
- 2. FWHM measures do not depend on gas absorption or dust extinction
- 3. The broad line intensity gets suppressed:
 - estimates based on the broad Ha line luminosity when log N_H >~ 21 cm⁻²
 - 22 cm⁻²
 - SOLUTION: use an obscuration unbiased proxy for the BLR radius (=Lx)
- 4. The Mbh based on stellar velocity dispersions and those based on a mixed Lx+NIR virial estimate are in general agreement, with a scatter of ~0.5-0.65 dex
- 5. The normalized virial factor f/f0 is not biased with redshift, X-ray absorption but does mildly depend on M(line)

Relativistic J

etion Disk

Event Horizon

Ha broad line luminosity is biased when log $N_H > 21$ cm⁻²-> bias in the Mbh • NIR broad line luminosities gets suppressed but at slightly higher N_H, log N_H >~

