Investigating the mini and giant radio flares of the enigmatic microquasar Cygnus X-3

E. Egron (INAF-Observatory of Cagliari)

In collaboration with:

A. Pellizzoni, M. Giroletti, S. Righini, S. Trushkin, K. Koljonen, K. Pottschmidt,
M. Stagni, A. Orlati, C. Migoni, A. Melis, M. Pilia, S. Loru, R. Concu, L. Barbas, S. Buttaccio,
P. Cassaro, P. De Vicente, M.P. Gawronski, M. Lindqvist, G. Maccaferri, C. Stanghellini, P. Wolak,
J. Yang, G. Surcis, J. Rodriguez, J. Wilms, V. Grinberg, S. Corbel, S. Markoff et al.

- * Microquasars are X-ray binaries launching relativistic jets
- * About 20 microquasars are **now** known (7% of X-ray binaries)
- * 1rst microquasar observed in 1992 (Mirabel et al., Nature 1992)
- * Scaled-down version of quasars

- * Microquasars are X-ray binaries launching relativistic jets
- * About 20 microquasars are **now** known (7% of X-ray binaries)
- * 1rst microquasar observed in 1992
- * Scaled-down version of quasars

- * Microquasars are X-ray binaries launching relativistic jets
- * About 20 microquasars are **now** known (7% of X-ray binaries)
- * 1rst microquasar observed in 1992
- * Scaled-down version of quasars

=> Microquasars evolve on much faster time scales

Jets (radio, mm, OIR X-rays, gamma rays)

Comptonizing corona (hard X-rays)

Accretion disk (opt, UV, soft X-rays) Companion star (opt, UV, IR)

Key questions

- * Do all X-ray binaries launch jets? Sensibility?
- * How are jets launched ?
- * What causes in-situ acceleration of particles in a jet?
- * How are the properties of jets (power, speed, shape, etc.) related to accretion?
- * What conditions are necessary in the accretion flow ?
- * What is the role of the corona?
- * How do the properties of jets vary between BHs and NSs ?
- * What impact do the jets have on their environment ?

Typical evolution of microquasars during outbursts

Hardness-Intensity Diagram

Inner accretion-flow variability :
 => X-ray state changes

Spectral Hardness (soft=more thermal, hard=more nonthermal)

Romero et al. 2017

Typical evolution of microquasars during outbursts

Romero et al. 2017

The case of Cygnus X-3

The case of Cygnus X-3

Cyg X-3: a very peculiar microquasar

- * HMXB, a black hole or a neutron star wind-fed by a Wolf-Rayet star
- * Short orbital period: 4.8 hr, distance 7.4 kpc (McCollough+16)
- * The brightest X-ray binary in radio :
 - => Giant radio flares of 10-20 Jy after quenched radio state (< 30 mJy) (Waltman+95; Mioduszewski+01; Miller-Jones+04; Corbel+12)
 - => Transition from the hypersoft X-ray state to a harder state (Szostek+08; Koljonen+10; Koljonen+18)

* Gamma-ray emission observed with AGILE and Fermi (Tavani+09, Fermi/LAT collab. 2009)

The giant flares of Cyg X-3

Courtesy of S. Trushkin

The giant flares of Cyg X-3

Courtesy of S. Trushkin

Radio, X-ray, gamma-ray monitoring

S. Trushkin

Radio multifrequency monitoring + VLBI observations

- * SRT and Medicina : multifrequency observations, evolution of the giant flares (flux density, spectral index) during several consecutive days
- * VLBI provides speed, direction, evolving morphology of the jets, more difficult to schedule quickly

A mini-flare during the quenched radio state

S. Trushkin

Mini-flare on 1st Sept 2016

Egron et al. 2017

Mini-flare on 1st Sept 2016

- * Evolution of the size of the emitting component during the 4 first hrs
 => expansion at the velocity 0.06c assuming d = 7 kpc
- * Short radio flare close to the core of the source : compact jets

Egron et al. 2017

Radio orbital modulation ?

- * A modulation of the radio emission from the jet is expected by variable free-free absorption in the wind from the companion star along the orbit.
- * Mini flares: compact jets, perhaps easier to detect the orbital modulation ?

Mini flares observed with the VLA and VLBI

* The peak separation observed during miniflares at 15-22 GHz seems to correspond to the orbital period: 4.8 hrs.

Radio orbital modulation

- * Phase folding renormalized light curves corresponding to 6 mini-flare datasets observed between 1983 and 2016 using the X-ray ephemeris from Bhargava+17.
- * The 2016 light curve peak is shifted of 0.5 w.r.t. the other ones.

Egron et al. 2020

Phase shift in 2016

- * The phase shift is most likely attributed to a different location of the radio emitting region along the jet.
- * Emitting jet with bulk emission at altitudes ≥10^14 cm (1 mas angular separation) can provide an emission delayed up to about 1 hour => phase shift > 0.2.

- * 2016 mini-flare: 0.6-0.9 mas
 * 1985 and 1995: 2.0-2.5 mas
- * Jet position, extension
- * Inclination, precession

Timing delay

The giant flare in September 2016

S. Trushkin

Single dish observations

* Observations at 7.2, 8.5, 18.6, 22.7 and 25.6 GHz with SRT and Medicina

Egron et al. 2017

Single dish observations

* Observations at 7.2, 8.5, 18.6, 22.7 and 25.6 GHz with SRT and Medicina

=> Evolution from optically thick to optically thin plasmons in expansion moving outward from the core

Egron et al. 2017

The giant flare in April 2017

S. Trushkin

Multifrequency monitoring with Medicina

- * Evolution of the spectral index over 8 days from 4 April 2017 (sessions 3-13 hrs/day)
- * Spectral steepening at the maximum of the flare with $S_{
 u} \propto
 u^{-lpha}$

Egron et al. 2020

Radio orbital modulation

- * The enhanced emissions at 8.5 GHz seem to correspond to the orbital phase 0.5.
- * Modulation of the base of the jet at Porb most likely by from free-free absorption by thermal electrons from the wind of the WR.

Egron et al. 2020

EVN observations in April 2017

* 2 runs e-EVN triggered at 5 GHz on 10 and 13 April for 15 hrs each

* extended structure with a strong variability

Comparison with EVN observations at 5 GHz in April-May 2006

Quiescent state, several weeks after a flare

1 week days after a major flare

Tudose et al. 2007

Comparison with EVN observations at 5 GHz in April-May 2006 with the 2017 flare

Several weeks after a flare

1 week after a major flare of 2006

5 days after the 2017 giant flare

Comparison with EVN observations at 5 GHz in April-May 2006 with the 2017 flare

Several weeks after a flare

1 week after a major flare of 2006

Proper motion Cyg X-3: 4.6 mas/yr (Miller Jones et al. 2009)

Proper motion of Cyg X-3 using 25 years of data

(Miller Jones et al. 2009)

The changing jet morphology of Cyg X-3

VLBA: 2, 4 and 7 days after the 1997 giant flare

The jet orientation varies with time, the jet is precessing (5-60d) and probably close to the line of sight (i: 10-30°).

VLBA: 4 days from the 2001 giant flare

The giant flare of June 2019

Swift/BAT and RATAN-600 daily monitoring of Cyg X-3

https://www.sao.ru/hq/lran/XB/CygX-3/CygX-3_lc_rat_sw_2019f.png

The giant flare of June 2019

- Flares of strong intensity in April 2019, then a giant flare in June 2019
- Coordinated multi-wavelength obs: radio (AMI, RATAN, VLA, VLBI, KaVN, Metsähovi), submillimeter (SMA, JCMT), X-rays (Swift, NuSTAR, NICER), gamma rays (AGILE)
- VLBI obs triggered: Sr, Md, Nt, Ib, On, Tr, Ys at 5 GHz (8 hrs x 2 days) on April
 Medicina obs on 21-23 June at 8.5 and 25 GHz

The giant flare of February 2020

* Multifrequency monitoring with the RATAN-600

Trushkin et al. (ATel #13461)

The giant flare of February 2020

* SRT observations at 7.2 and 24.7 GHz

* Medicina and Noto were in maintenance

Egron et al. (ATel #13475)

Summary

- Cyg X-3: a complex and very interesting target for the study of accretion/ejection
- Radio orbital modulation detected during the mini-flares
- Need more data during the giant flares to better understand the orbital modulation and what is going on in the multi-wavelength context
- Difficult but essential to trigger observations very quickly
- Nice future for the Italian antennas : new receivers at higher frequency are coming, in particular a multifrequency band receiver 22, 43 e 86 GHz ...

Microquasar workshop to be held in Cagliari in September 2020 => 2021... <u>https://sites.google.com/inaf.it/microquasar-2020/home</u>

Thank you for your attention !

