Real-time analysis detection methods for the Cherenkov Telescope Array

Ambra Di Piano with A. Bulgarelli, V. Fioretti, N. Parmiggiani, L. Baroncelli, G. Stratta, G. De Cesare

The Cherenkov Telescope Array

CTA North La Palma, Spain

CTA South Paranal, Chile

The Cherenkov Telescope Array

LST-1

CTA North La Palma, Spain

CTA South Paranal, Chile

The Cherenkov Telescope Array

CTA will pair superior sensitivity with better performances in terms of angular and energy resolution with respect to existing IACTs. It will also have a wider **energy range** and a far larger **field** of view (FoV).

The Real-Time Analysis

SAG: Science Alert Generation \rightarrow an on-site automated software system that analyses data during observations.

Provided by the SAG

- **RECO:** Low-Level Cherenkov data reconstruction;
- **DQ:** Online Data Quality of reconstructed Cherenkov data, to produce data quality summaries, data quality warnings and alarms;
- **DVR:** Data Volume reduction additional selection.
- SCI: High-Level Analysis
 - Science Monitoring → science quick looks (i.e. skymaps, lightcurves) for the Support Astronomer;
 - Science Alert Generation \rightarrow issuing of science alert.

The Real-Time Analysis

We must

- Search for transient phenomena on timescales from 10 seconds to 30 minutes
- Issuing of candidate science alerts **within 20s of latency** since data becomes available to the system (5 of which are allocated to the SAG-SCI module)
- Perform first high-level analysis with sensitivity **not worse than half** of the CTA nominal sensitivity

The CTA-SAG is a key system in the context of **multi-messenger** and **multi-wavelength** astronomy.

SAG-SCI · High-level data analysis

Workflow

- Simulated incoming stream of DL3
- If required we run a **blind search**
- We evaluate **flux** and **significance** of the detection
 - which technique?
 - \circ which tool?

Techniques:

- full-fov max. likelihood
- on/off reflection
- on/off wobble

SAG-SCI · High-level data analysis

Workflow

- Simulated incoming stream of DL3
- If required we run a blind search
- We evaluate **flux** and **significance** of the detection
 - which technique?
 - \circ which tool?

Follow-up from an external alert

Simulations (trials = 10⁴):

- BNS merger → from <u>GW COSMoS</u> database by <u>B. Patricelli</u>
- GRB afterglow → by <u>L. Nava</u> for the <u>POSyTIVE</u> project
- EBL absorption \rightarrow <u>Gilmore et al. 2012</u>

The Extragalactic Background Light (EBL)

absorption is due to the interaction of VHE photons with the diluted and redshifted (as well as reprocessed) light of resolved, unresolved and diffuse sources in the universe.

Follow-up from an external alert

Simulations (trials = 10⁴):

- BNS merger → from <u>GW COSMoS</u> database by <u>B. Patricelli</u>
- GRB afterglow → by <u>L. Nava</u> for the <u>POSyTIVE</u> project
- EBL absorption \rightarrow <u>Gilmore et al. 2012</u>

Follow-up from an external alert

Initial assumptions

- Pointing:
 - max. localisation probability
 - localisation uncertainty ~ FoV
- CTA South full-array
 - 30 GeV 150 TeV
- External alert

•
$$t_{delay} = t_{alert} + t_{slew} = 50 s$$

- RTA sensitivity
 - Degradation of the Instrument Response Functions (IRFs)

Sensitivity degradation

Skymaps (example seed=1)

Lightcurves (example seed=1)

Performance evaluation at very-short exposure times

• Localisation accuracy

 distance between the detected candidate coordinates and the true coordinates of the source

• Detection efficiency

• percentage of trials that result in positive detection

• Detection significance

- we verified that $\sigma = \sqrt{TS}$ for d.o.f. = 1
- Integrated flux

At given integrated flux - 10000 trials

At given integrated flux - 10000 trials

At given integrated flux - 10000 trials

At given exposure time (10s) - 10000 trials

At given exposure time (10s) - 10000 trials

At given exposure time (10s) - 10000 trials

Further studies

• Ongoing exploration of the parameter space

- delay of 50, 100, 150 seconds
- integrated flux scaled 1/1, 1/2, 1/3
- off-axis angle of 2, 3, 4 deg from pointing

• Other parameters

- skymap pixel size and smoothing
- blind-search acceptance threshold
- different degradation of IRFs
- o different array configuration and energy range

• Other studies

- techniques: full-fov max. likelihood, on/off reflection and wobble
- tools: ctools, gammapy, rta photometry tool

• Future?

- exposure times from 10 s to 30 min
- different source models
- different source classes

