Credit: ESO/MUSE HUDF collaboration

High-z galaxies from MUSE deep observations

A. Feltre (INAF/OAS) & MUSE consortium

The context ...

Integral Field Unit on VLT
4750-9300 Å
R~3000
Field 1'x1', sampled at 0.2" (WFM)
Field 7"x7', 0.025" (NFM)
Coupled to ESO AO Facility

MUSE - Wide (100 fields in CDFS+COSMOS) 78 arcmin², 1h MUSE - Deep (MOSAIC) 9 arcmin², 10 h MUSE - Ultra Deep (UDF-10) 1 arcmin², 31 h MUSE - eXtreme Deep (MXDF) 1 arcmin², >100h

 3σ emission line detection limit :

- MOSAIC: $3.1 \times 10^{-19} \text{ erg s}^{-1} \text{ cm}^{-2}$
- UDF-10: $1.5 \times 10^{-19} \text{ erg s}^{-1} \text{ cm}^{-2}$

MUSE Hubble Ultra Deep Field Survev

Bacon+17

MUSE Hubble Ultra Deep Field Survev

Bacon+17

MUSE Hubble Ultra Deep Field Survev

Bacon+17

Lya emitters (LAEs) in the MUSE HUDF Survey

88 missed in the HST catalog

72 beyond the HST detection limit Maseda+18,20

Lya extended emission from the circumgalactic medium (CGM) of high-z galaxies

- observed in 80% of the sample
- \rightarrow > 50% of the CGM virial radius
- up to 70% of Ly α flux in the halo

Leclercq+17,20, Wisotzki+16,18

Properties of the MUSE LAEs

LAEs stacked spectrum

nebular emission lines

ionized gas (density, metallicity, ionization)

ISM absorption

outflows, optical depth

stellar features

stellar population
(e.g. hot/massive stars)

fine-structure transitions

origin ambiguous (e.g. outflows?)

Feltre+20

CIV resonant doublet and absorption features

CIV EW (emission doublet) = 2 - 5 Å

Feltre+20

Feltre+20

Comparison with the literature

- emission lines in overall agreement with other z>2 sources and local metal-poor galaxies
- current spectral models can not fully account for the observed HeII nebular emission (requiring photons with energy > 54 eV, Berg+18, Nanayakkara+19, Plat+19)

MUSE - eXtreme Deep Field (MXDF)

- maximum depth of 140h
- 1 arcmin² assisted with AO
- improved image quality

Catalog of 733 sources in the MDXF **Bacon+21**, **Bacon+ in prep**

1258 LAEs at z>2.9 in all the 9 arcmin²

MUSE - eXtreme Deep Field (MXDF)

22 overdensities

- 370 LAEs in groups
 (29% of the total sample)
- ▶ 17 members on average (min. 10 - max. 26)
- mean overdensity $\delta = 3.2$
- 31% of the members are HST-undetected LAEs

14 overdensities show extended Lya emission

- 70% Ly α flux of filaments comes from beyond the the CGM
- 5 have extended Lyα emission with high significance (average surface brightness of 5×10⁻²⁰ erg/s/cm²/arcsec²)

Origin of diffuse Lya emission in the filaments?

- UV background Ly α fluorescence: <30% at z~3, <10% at higher z
- population of undetected ultra low luminosity LAEs (steep Ly α LF(α <-1.84), extends to luminosities <10³⁸-10³⁷ erg/s and significant faint LAEs clustering, ie. filling factor<1/6)

MUSE deep fields and high-z

Thank you!

- first access to a population of low-mass galaxies at high-z
- study of the ISM and CGM at z>3
- ► UV lines ubiquitous in faint and low-mass LAEs. The variety of profiles encodes information on galaxy properties and is mainly driven by M★ and SFR
- synergy with HST and JWST to understand galaxy evolution
- first detection of the cosmic web in emission in typical filamentary environments

