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Venus: looking for PH3 with ALMA
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● VenusVenus
● Why phosphine? Why phosphine? 

– JCMT detection of 1.1 mm JCMT detection of 1.1 mm 
PHPH33 line line

● ALMA observationsALMA observations
● Other evidenceOther evidence
● Atmosphere of Venus and Atmosphere of Venus and 

phosphorous chemistryphosphorous chemistry
● History of Venus v. life on History of Venus v. life on 

EarthEarth
● Next?Next?

LeftLeft Venus (Magellan imaging radar Venus (Magellan imaging radar
  colours based on Venera probes)colours based on Venera probes)

RightRight Earth (Apollo 11) Earth (Apollo 11)

Outline
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https://wisp.physics.wisc.edu/
astro104/lecture16

Earth

Venus

Venus
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https://wisp.physics.wisc.edu/
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Bains 
et al.
2020 
Icarus

Atmosphere of Venus
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Bains 
et al.
2020 
Icarus

Atmosphere of Venus

CO2     96.5%
N2            3.5%
SO2    150ppm
Ar     70ppm
H2O     20ppm
CO     17ppm
He     12ppm
HCl  >0.1ppm
HF >0.001ppm
...
PH3   5-20ppb 
molecules mostly located in  Temperate zone

Composition of atmosphere (not locations)

66
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Venus and phosphine  

● Ataksuki Venus climate orbiter found unexpected, irregular 
distribution of particles (Limaye+'17)
– cf Carl Sagan's “unexplained UV absorber”
– Reminiscent of Terrestrial cloud bacteria

● Classic search for life is to look for non-equillibrium gas mixture

Earth's atmosphere Kaltnegger et al. 2009
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Venus and phosphine  

● Ataksuki Venus climate orbiter found unexpected, irregular 
distribution of particles (Limaye+'17)
– cf Carl Sagan's “unexplained UV absorber”
– Reminiscent of Terrestrial cloud bacteria

● Classic search for life is to look for non-equillibrium gas mixture
– Phosphine, PH3 reacts rapidly with oxidising agents like CO2, SO2

● Uniquely associated with life on Earth 
– Not expected to occur on other rocky planets 

● Greaves used JCMT to benchmark upper limits
– Amazed to detect PH3 towards Venus

88
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JCMT 2017 
● Observe strongest longer-wavelength 

transition of phosphine

● λ 1.123 mm absorption against optically thick cloud blanket
● ---- model ── convolved with corrected instrument bandpass
● ~20 parts per billion (ppb) PH3

● Pressure, hence altitude, estimated roughly from line width 

lab/QM predictions

Eupper

PH3 266.9445 GHz



1010

ALMA:  5000 m up ALMA:  5000 m up 
in the Andesin the Andes

● Chajnantor plateau of the Atacama Chajnantor plateau of the Atacama 
DesertDesert
– 5000 m altitude5000 m altitude

– Precipitable water vapour (PWV) Precipitable water vapour (PWV) 
≥≥0.1 mm0.1 mm

● 50 12-m antennas in main array50 12-m antennas in main array
– Baselines up to 16 kmBaselines up to 16 km

● 12 7-m antennas short spacing array12 7-m antennas short spacing array
● 4 more 12-m for total power4 more 12-m for total power

1010



1111

ALMA observing bands transmission

B1B2B3B4 B5  B6     B7           B8                      B9                   B10         

10 4 3  2  1.6 1.2     0.9          0.7                    0.45                 0.35 λ mm  

In production
In design
In operation

1111
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Observing phosphine
10 4 3  2  1.6 1.2     0.9          0.7                    0.45                 0.35 λ mm  

1212
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Observing Venus
● Orbital radius 0.72 au
● Year 224.7 Earth days

– <2 Venus days!
● Some cloud layers blow round the 

planet in a few Earth days
● mm-wave 'continuum' is blanket 

of optically thick cloud lines
– Flux density ~independent of 

insolation
● Any bugs may be active in 

sunlight? ALMA observations March 2019 DDT
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Venus with ALMA

● Great care with observing and 
calibrating bandpass

● Total continuum flux 2291 Jy
● Large uncertainty

– ~14 Jy per 1”.16 x 0”.80 beam
– Need ~5000:1 spectral dynamic 

range
● Angular size ~16”

– Continuum almost smooth
● Slightly limb-darkened

Greaves et al. 2020
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Imaging Venus
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● All-data cube bandpass ripples
– Resolved-out flux
– Also fills >40% of primary beam

● Primary beam not characterised to 
>5000:1 far from centre

Greaves et al. 2020
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Imaging Venus
● All-data cube bandpass ripples

– Resolved-out flux
– Also fills >40% of primary beam

● Primary beam not characterised to 
>5000:1 outside inner 1/3

– Combination of factors causing ripples
– Flag short baselines

● Subtract linear continuum fit from 
visibilities

– Scales <4”.3 imaged in final cubes
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Extracting spectra
● Spectra per synthesised beam dominated 

by noise
– Sum across polar regions, mid latitudes and  

                                          equator 
● Fit polynomial 

baseline to co-
added spectra  

1717



1818

ALMA phosphine absorption (2019 processing)

Whole-planet spectrum Polar regions

Mid latitudes

Polar regions

Equatorial regions

● Compare with full-disc 
continuum

● Line:continuum ratio 
– JCMT -250±80 ✕10-6

– ALMA -87±11 ✕10-6

– Mid  -126±14 ✕10-6

● ALMA < JCMT  
– Structures >4” not 

imaged
● Line centre within 

0.7 km/s of Venus 
velocityGreaves et al. 2020

Turns out locations not reliable 

due to bandpass phase errors
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Checking
● Various checks that PH3 detection not an 

artifact:
● No line at 1.123 mm in calibration sources
● Try baseline fitting around different parts 

of spectrum
– No line appears

● HDO (heavy water) line at 1.126 mm also 
observed
– And detected at expected strength 

HDO

Greaves et al. 2020
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5000:1 dynamic range, fills beam, moving targets...
What could possibly go wrong....?

● Jupiter's moon Callisto used for bandpass calibration
– 2019 ALMA BP calibration not adapted to ephemeris objects

● Flux overestimated, bandpass ripples
– Standard procedure averages narrow channels to increase S/N

● Can introduce 'steps' at very high dynamic range 
● Venus' contribution to Tsys not allowed for

–  Underestimates flux - coincidentally hiding bandpass problem!
● Venus tracked perfectly but primary beam correction lopsided

– Bug in CASA 5.4
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● Villanueva's team informed JAO of Callisto problem
– Data reprocessed ('QA3') by ESO, also fixing other bugs

● Fit polynomial to bandpass calibrator to avoid possibility of steps
● Post-standard calibration, tried flattening Venus bandpass

– Prefer image plane removal of 6th-order baseline for PH3 cube
● Cannot remove phase errors but more intelligible to non-experts

● Remaining  strengths and weaknesses:
– Minimised IF chain systematics by cycling 3 LO settings ✔
– Residual direction-dependent bandpass ripples

● Reduced by removing baselines <33 m
– Due to uncertainties in characterising primary beam outer regions?
– Try small mosaic next time

Reprocessing of data              

buried
under red-
hot data

2121
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Reprocessed Venus PH3 detection 

● Spectra from ~equatorial 
region symmetric about 
Venus centre
– Localisation unreliable due 

to BP phase residual errors
● Dotted blue line 5 ppb PH3 

abundance model
– Reduced but significant 

detection
● Any large-scale PH3 and line 

wings lost in processing

ALMA HDOHDO 266.161 GHz

ALMA PHPH33 266.9445 GHz 

2222
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Line contamination? Unlikely

● SO2 266.943 GHz 
– Offset +1.3 km/s from PH3 line

● >2 ALMA channels
● SO2 267.537 GHz not detected by 

ALMA 
– Limits 266.943 GHz to <20% PH3

● SO2 346.652 GHz JCMT detection
– 2017 June 06 (3 days before PH3)
– Predict 266.943 GHz line strength 

●  <10% of observed PH3 line

JCMT SO2 model 
                        PH3 2017 June 09-16
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PH3 suggested by direct sampling!
● Re-examine Pioneer-Venus 1978 mass spectrometer 

– Sampled ~50 - 60 km altitudes
– P compounds not previously considered
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Pioneer-Venus reanalysis
● Mass signals blended but 

parent molecules 
identified by comparing 
potential fragments, 
isotopes, ions 

– 33.992 amu signal likely 
to be more PH3 (33.997) 
than  previously-assigned 
H2S (33.988)

– Mogul et al. 2020, 2021 
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Atmosphere of Venus

● Molecules found near 
'temperate' zone

– But can drift upBains 
et al.
2020 
Icarus
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Bains 
et al.
2020 
Icarus

Atmosphere of Venus

● Full atmospheric line width 
determined by pressure 
● Could deduce height from 

spectrum if wings detected
● All layers contribute to line centre

2727
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Formation of Phosphine
● Formed deep in H-rich gas giants (Jupiter etc.) at high pressures

● <0.001 ppm PH3 in terrestrial atmosphere  

– Formed by anaerobic bacteria & industry
● Not found in terrestrial volcanic gases but theoretically possible

● Photochemical model for Venus (Bains et al.)

– PH3 destruction by O, Cl in atmosphere, heat at surface

– H3PO4 likely to be most abundant P species

– Abiological reduction with O, H, H2 to PH3 
● At 10-9 of destruction rate
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Rate limiting step

PH3 formation and destruction

Bains 
et al.
2020 
Icarus



3030

e.g
. p

h
osp

ha
te

 to
 ph

o
sp

h
i n

e?

Vulcanism?
Totally insufficient activity ✘ 

Photochemical PH3 production? 
Sunlight?

Injection? 
Meteors? 

Far too little ✘
Lightning?

Far too little ✘

Seager 
et al. 
2021

Solar wind stopped by upper atmosphere ✘

3030
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Bains 
et al.
2020 
Icarus

Lifetime of PHLifetime of PH
33

1s            1hr         1day       1yr        1000yr

3131
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History of 
Venus

● Could life have evolved when 
Venus surface was cool 
enough for liquid water?

– Up to 800 million yr ago

● Now, CO2 atmosphere with 
H2SO4 droplets

– Ascend, form cloud layer, 
droplets grow, rain out

– Liquid-based life could only 
thrive inside droplets

NASA simulation



3333NASA simulation

The awful 
warning of 

runaway global 
heating 
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                     Extremophiles on Earth

Algae at Tatio 
hot springs
(near ALMA)
-20 to 80 C 
every morning

3434



3535Merino et al. 2019 Frontiers in Microbiology * but not nearly as acid as Venus

*
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P vital for terrestrial cell energy transport

● Adenosine Di-Phosphide 
⇌ A Tri-Phosphide

– Metabolism of NADH 
– Form/store energy-rich 

molecules

● NADH: 2 nucleiotides 
joined by phosphate

– Powerful redox agent
● H+ / e transport

https://commons.wikimedia.org/w/index.php?curid=2716553
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Possible terrestrial PH3 pathway

● Anaerobic 
bacteria 

– Swamps, gut...

– Acidic 
environment

● (hypo-)phosphite
electron donor 

● Energy storage/ 
use cycle

Bains et al. 2019 Science of the Total Environment
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Speculative cloudy Venusians
● Water based? Atmosphere 50x more arid than Atacama 

desert (relative humidity)

– Droplets are ~15% H2O ... but bound to sulphuric acid

–  CHONPS available (similar P and S abundances, Venera) but 
<1% of H2 relative to Earth

– Low atmospheric metal abundance (cell ion transport)
● Plenty of energy for photosynthesis - O or S based?

– And enough insolation to maintain H2O gradient  

● Cell walls - protective sulphur + hydrophilic filaments?
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Hypothetical life cycle
● Desiccated spores 'float' in lower haze (few 100 C)

– Terrestrial spores 0.2~1.2 μm, similar to observed particles
● Survival & sedimentation timescales >century

●  Gravity waves/convection transport upwards
– Spores act as rapid cloud droplet condensation nuclei
– Droplets grow to 2-3 μm, spores rehydrate in temperate zone

● Micro-organisms (≳0.5 μm) reproduce
● Large droplets rain down, evaporate

– Cycle repeats
Seager 
et al. 2021 
Astrobiology
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Putative life cycle

Seager 
et al. 2021 
Astrobiology

4040
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2 Spores diffuse up 
   from hot lower haze

3 Act as cloud
   condensation nuclei

4 Metabolise and 
   reproduce in droplets

5 Droplets merge until
   they rain out

1 Spores float 
   inactive in haze 

Spores probably destroyed if they fall too close to surface  

Spores might survive upper atmosphere 

Seager 
et al. 2021 
Astrobiology

Timescale ~years

4141
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Hypothetical Venusian production

● Estimate energy involved, likely microbe & droplet sizes, locations
● 20 ppb PH3 needs bio mass ~4x107 kg ~10-4 mg m-3 (v. Earth 44 mg m-3 )

Lingham & Loeb 2020

Bains 
et al.
2020 
Icarus

XH = reducing 
agent e.g. 

NADH
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    Follow-up
● ALMA C8 proposal, observing 

strategy 'lessons learned'

● JWST IR lines? Venus bright...

● Candidate missions:

– ESA EnVision 
● Geology & atmospheric evolution,  

D:H

– NASA VERITAS
● Tectonics, vulcanism

– NASA DAVINCI+
● Atmosphere, evidence for past 

ocean 4343
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Venus just visible at sunset 
tonight from Bologna

looking West

4444
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