DISTANT DUSTY UNIVERSE

Irene Shivaei

Hubble fellow, University of Arizona JWST MIRI/NIRCam GTO science teams

"Sure it's beautiful, but I can't help thinking about all that interstellar dust out there."

Dust represents only 1% of the ISM mass, but...

has important roles in the ISM physics and chemistry,

- Star and planet formation
- Catalysts for formation of certain molecules
- ISM cooling and heating
- ISM gas dynamics
- Coupling the magnetic field to the gas

significantly shapes our view of galaxies,

Sombrero Galaxy. Credits: NASA/JPL-Caltech and The Hubble Heritage Team (STSc//AURA) Sombrero Galaxy/Messier 104

• 10°

NASA / JPL-Caltech / R. Kennicutt (University of Arizona), and the SINGS Team

Spitzer Space Telescope • IRAC

Visible: Hubble Space Telescope/Hubble Heritage Team ssc2005-11a

hides a significant fraction of star formation.

HUBBLE OPTICAL

SPITZER INFRARED

M81. Credits:NASA/JPL/ESA

HUBBLE OPTICAL

SPITZER INFRARED

1 10

M101. Credits: Optical: NASA/ESA/STScI/JHU/ K. Kuntz et al; IR: NASA/JPL-Caltech/STScI/K. Gordon

Infrared

Visible

Andromeda. Credits: Robert Gendler (visible) ; ESA / Herschel / SPIRE / HELGA (far-infrared)

Cosmic Infrared Background constitutes half of the Extragalactic Background

and now is observed out to the highest redshifts:

0

850 µm continuum / F160W

Knudsen+2017 z=7.5 Tamura+2019 z=8.31

ALMA 890 µm SDSS-i

Bowler+2018 z=7.17 Zavala+2018 z=6.02

WHEN WE OBSERVE GALAXIES, WE WOULD LIKE TO KNOW ...

star formation rate

stellar mass

age

star formation history

stellar population properties: metallicity, binarity ISM gas properties: abundances, ionizing radiation

dust properties: optical depth, dust mass, dust temperature

WE DERIVE THE PROPERTIES FROM:

star formation rate

stellar mass

age

star formation history

stellar population properties: metallicity, binarity ISM gas properties: abundances, ionizing radiation

dust properties: optical depth, dust mass, dust temperature

Spectral Energy Distribution (SED) of a galaxy

stellar radiation

Spectral Energy Distribution (SED) of a galaxy

Data from Galliano, Galametz, and Jones ARAA 2017

Spectral Energy Distribution (SED) of a galaxy

Data from Galliano, Galametz, and Jones ARAA 2017

Spectral Energy Distribution (SED) of a galaxy

Data from Galliano, Galametz, and Jones ARAA 2017

Spectral Energy Distribution (SED) of a galaxy

Data from Galliano, Galametz, and Jones ARAA 2017

DUST ATTENUATION/EMISSION IMPACTS ALL OF THESE QUANTITIES:

star formation rate

stellar mass

age

star formation history

stellar population properties: metallicity, binarity

ISM gas properties: abundances, ionizing radiation

dust properties: optical depth, dust mass, dust temperature

Spectral Energy Distribution (SED) of a galaxy

Data from Galliano, Galametz, and Jones ARAA 2017

Data from Galliano, Galametz, and Jones ARAA 2017

COSMIC STAR FORMATION ACTIVITY

Madau & Dickinson (2014)

SIGNIFICANT FRACTION OF STAR FORMATION IS DUST OBSCURED AT HIGH REDSHIFTS

SIGNIFICANT FRACTION OF STAR FORMATION IS DUST OBSCURED AT HIGH REDSHIFTS

SIGNIFICANT FRACTION OF STAR FORMATION IS DUST OBSCURED AT HIGH REDSHIFTS

Going to lower masses

• Step 1: how much dust is there?

- Step 1: how much dust is there?
- Step 2: evolution of dust and chemical enrichment of the ISM

Galliano, Galametz, and Jones ARAA 2018

- Step 1: how much dust is there?
- Step 2: evolution of dust and chemical enrichment of the ISM

Galliano, Galametz, and Jones ARAA 2018

- Step 1: how much dust is there?
- Step 2: evolution of dust and chemical enrichment of the ISM

Galliano, Galametz, and Jones ARAA 2018

- Step 1: how much dust is there?
- Step 2: evolution of dust and chemical enrichment of the ISM

Galliano, Galametz, and Jones ARAA 2018

It's one connected system

z ~ 1 – 3: Peak Epoch of Cosmic Star Formation Activity

✔ Irene Shivaei, University of Arizona

OUTLINE

* Rest-frame optical spectroscopy tracing ionized gas at z~2 (MOSFIRE Deep Evolution Field Survey)

48.5 nights with MOSFIRE on Keck I (2012-2016) Rest-frame optical spectra of ~ 1500 H-selected galaxies $1.37 \le z \le 3.80$ CANDELS fields Collaboration between UC Berkeley, UCLA, UC San Diego, UC Riverside

UV-OPTICAL ATTENUATION

✔ Irene Shivaei, University of Arizona

Wavelength, λ [µm]

Data from Galliano, Galametz, and Jones ARAA 2018

UV AND OPTICAL TRACED BY LARGE GROUND AND SPACE OBSERVATORIES

DUST ATTENUATION/EXTINCTION CURVE

Attenuation/Extinction Curve

DUST ATTENUATION/EXTINCTION CURVE

EFFECT OF DUST ON TWO COMMONLY-USED SFR INDICATORS

THE EFFECT OF DUST ATTENUATION CURVE ON SED FITTING*

WHAT MAKES THE ATTENUATION CURVES DIFFERENT?

Geometry of dust with respect to stars

WHAT MAKES THE ATTENUATION CURVES DIFFERENT?

Geometry of dust with respect to stars

see e.g., Weingartner & Draine (2001)

THE TWO EFFECTS ARE ENTANGLED

respect to stars

see e.g., Weingartner & Draine (2001)

DERIVING THE ATTENUATION CURVE (METHODOLOGY OF CALZETTI ET AL. 2000)

ATTENUATION CURVE AT $z\sim2$ AS A FUNCTION OF METALLICITY

Different dust Grains Properties and/or Age-dependent attenuation

Steep UV rise at low metallicities

- Grain size: Small grains (shattering, lower molecular fraction)
- Grain composition: Lower fraction of small carbonaceous to small silicate grains
- Age-dependent attenuation curve

Shivaei et al. (2020a)

Origin of the UV bump feature

 Grains that produce the bump are not present in low-metallicity environment (destroyed by hard radiation? Not produced?)

Shivaei et al. (2020a)

Origin of the UV bump feature

Shivaei et al. (2020a)

Aromatic Hydrocarbon **Emit in mid-IR Absorb UV** $\sqrt{3}$ Spitzer Gas

PAH: Polycyclic

What determines the locus of galaxies in IRX- β ?

At a given β , IRX strongly correlations with metallicity

Metallicity is an important factor in the scatter of IRX-β (the correlation with mass is much weaker)

UV SFRs corrected using metallicity-dependent dust curves are accurate

Tested against $H\alpha$, $H\beta$ star-formation rates:

Using a shallow curve for low-metallicity or a steep curve for high-metallicity

affects SFR estimates by x3

Shivaei et al. (2020a)

UV SFRs corrected using metallicity-dependent dust curves are accurate

Tested against H α , H β star-formation rates:

Using a shallow curve for low-metallicity or a steep curve for high-metallicity

affects SFR estimates by x3

Shivaei et al. (2020a)

and IR measurements:

Shivaei et al. (2020b)

We have a good understanding of the behavior of cold dust emission in IR-bright star-forming galaxies at z>1

Observations: $\langle L_{IR} \rangle = 6 \times 10^{12} L_{\odot}$ Model: Rieke+2009 template of $log(L_{IR}) = 11.25$

FIR dust continuum emission in *typical* z~2 galaxies

Deep 38-hour ALMA Cycle-7 program to trace dust continuum emission in *typical* z~2 galaxies (PI: I. Shivaei)

> Metallicity measurements (MOSDEF survey)

> Tracing a new unexplored parameter space

Shivaei et al. (in prep)

Similar intense warm component has been observed in local dwarf galaxies (DGS survey):

- Calibrations at $z \sim 2$ are incorrect by ~ 0.3 dex [unlikely \times] \bullet
- Lower dust/gas at a given O/H at z~2 [not known ?]

The IR emission properties of dwarf galaxies at $z\sim0$ are observed in more luminous galaxies at $z\sim2$:

More intense interstellar radiation field at a given O/H at z~2 [likely; super-solar O/Fe abundances at z~2 V

FUTURE WITH JWST

* US MIRI GTO HUDF survey to trace PAH emission at z~1-2

✔ Irene Shivaei, University of Arizona

THE MID-IR SPECTRA OF GALAXIES

- The mid-IR emission features are commonly attributed to PAH emission
- PAHs are the most abundant organic molecules in space and account for up to $\sim 20\%$ of the IR emission of galaxies

HIGHER SENSITIVITY

Image credit: Casey Papovich

HIGHER SENSITIVITY, HIGHER RESOLUTION, MULTIPLE BANDS

Image credit: Casey Papovich

TRACING MID-IR EMISSION AT Z~1-2 WITH JWST MIRI

JWST/MIRI GTO EXTRAGALACTIC PROGRAM IN GOODS-SOUTH (PI: GEORGE RIEKE, UNIVERSITY OF ARIZONA)

Survey Parameters:

- 5 25µm
- 30 arcmin²
- ~8µJy at 21µm (10σ)
- ~30 hours (exposure time)
- NIRSpec follow-up

MIRI bands (5-28µm) will provide a very low-res spectra (R~5)

see: Rieke, Alberts, Shivaei+2019, JWST/MIRI Surveys in GOODS-S

COMPLETE PICTURE OF STAR FORMATION AT $Z\sim 2$

JWST/MIRI GTO EXTRAGALACTIC PROGRAM IN GOODS-SOUTH

- > 800 galaxies with SFR >10 M_{\odot}/yr at z~1-2
- S/N~10 at 21µm
 - at z~2 corresponds to obscured SFR of ~10 M_☉/yr and L(IR) ~ 10¹¹ L_☉
 - An order of magnitude deeper than Spitzer/MIPS

MID-IR AROMATIC BANDS RELATIVE INTENSITIES

JWST/MIRI GTO EXTRAGALACTIC PROGRAM IN GOODS-SOUTH

MID-IR AROMATIC BANDS RELATIVE INTENSITIES

JWST/MIRI GTO EXTRAGALACTIC PROGRAM IN GOODS-SOUTH

NIRSPEC SPECTROSCOPIC FOLLOWUP

JWST/MIRI GTO EXTRAGALACTIC PROGRAM IN GOODS-SOUTH

• NIRSpec MSA, $1-5\mu$ m, R=1000

- G140M/F100LP: 7ksec
- G235M/F170LP: 7ksec ullet
- G395M/F290LP: 3.5ksec ●
- 3 pointings
- [OII], Hβ, [OIII], Hα, [NII], Paα
- Ha SFRs ~ $1M_{\odot}/yr$ at z~2
 - $F_{H\alpha} \sim 10^{-18} \text{ erg/s/cm}^2$

SUMMARY

- The first studies that connect the ionized gas properties to dust attenuation and emission features in typical L* galaxies at Cosmic Noon:
 - A steep attenuation curve at low gas metallicities (steeper than the Calzetti starburst curve)

SUMMARY

- The first studies that connect the ionized gas properties to dust attenuation and emission features in typical L* galaxies at Cosmic Noon:
 - A steep attenuation curve at low gas metallicities (steeper than the Calzetti starburst curve)

I CUBIIII C

redshift

- Hotter and a wider range of dust temperatures at sub-solar me
- Understand the physics of ISM and its evolution compared to 12

-0.8

Multi-wavelength spectroscopic an photometric surves of galaxies and AGN at $z \sim 1-3$ are the next frontier: -2.44 5 6 7 July 3 redshift

lookback time (Gyr

INAF-OAS Bolog