LMS-1:

A dwarf galaxy stream populating the inner Milky Way halo

Khyati Malhan Humboldt Postdoc Fellow and IAU Gruber Fellow MPIA, Heidelberg

- Inspiration to understand the formation of the Milky Way halo using "Stellar Streams"
- Detecting the "LMS-1" stream (using STREAMFINDER and ESA/Gaia EDR3), and its chemo-dynamical analysis.
- LMS-1 has advanced our knowledge about the *early formation* of the Milky Way halo
- Concluding remarks + discussion.

with: Rodrigo Ibata Zhen Yuan Anke Arentsen Michele Bellazzini Nicolas Martin

- Galactic halo formed via accretion of "multiple" DM subhalos (smaller galaxies)
- z>1.5 [early]: higher rate of merging and mass assembly
- z<1.5 [recent]: passive and stationary phase of merging
- It is hard to connect this scenario of hierarchical growth of DM halos [prediction of LCDM] with the galaxies [observations]

Simulation: Via Lactea (600kpc x 800kpc)

Present day: observation + prediction

Unravelling the Halo formation using Stellar Streams

- LCDM: Majority of stars (+DM) in the Halo resulted from the "accretion" of several dwarf galaxies [a.k.a. <u>hierarchical growth of halos]</u>
- The infalling dwarf galaxies form <u>Stellar Streams</u> – testimony of the hierarchical growth history of the halos
- The stellar streams provide an excellent opportunity to constrain the <u>hierarchical</u> <u>formation history of the Milky Way Halo</u>
 Number of accretions ?
 > f(x,v) of accretions ?

Bullock & Johnston (2005)

• Known dwarf galaxy streams of the MW (~4-5): e.g., Sagittarius, Cetus

- Known dwarf galaxy streams of the MW (~4-5): e.g., Sagittarius, Cetus
- Sagittarius stream:
 - > Dynamical/chemical models indicate ~3-6 Gyr ago accretion (e.g., Ruiz-Lara et al. 2020)
 - > Sgr brought in a population of ~10 GCs
 - > The parent galaxy (Sgr dwarf) has a mass of $M_{halo} \sim 10^{9-10} M_{sun}$ (from dynamical models) and $M_{star} \sim 10^{6-7} M_{sun}$
 - > Populates the <u>outer halo</u> (~15-100 kpc)

GCs that match Sagittarius stars in position, distance and velocity space

- Known dwarf galaxy streams of the MW (~4-5): e.g., **Sagittarius, Cetus**
- Cetus stream:
 - > Dynamical models indicate ~5 Gyr ago accretion
 - > Brought in a population of (atleast) 1 GC (NGC 5824)
 - > The parent galaxy, $M_{halo} \sim 10^9 M_{sun}$, and $M_{star} \sim 10^5 M_{sun}$

> Populates the intermediate halo (~24-35 kpc)

- Known dwarf galaxy streams of the MW (~6): e.g., **Sagittarius, Cetus**
- All the known streams are <u>dynamically-young</u> systems (accreted <~3-6 Gyrs ago):
 > they are phase-space coherent

> they have large apocentres (>~35-40 kpc)

• Question:

At the present day, does the Milky Way contain signatures of <u>dynamically-old dwarf galaxy streams</u> (accreted ~8-10 Gyrs ago) ?

Dynamical old+new streams = 'chronological' formation history of the MW Halo

ESA/Gaia provides key to the detection of these dynamically-old streams (i.e., of early accretions, >~8-10 Gyrs ago)

STREAMFINDER: Finding streams in the ESA/Gaia dataset

(Malhan & Ibata 2018; Malhan et al. 2018, Malhan, Ibata & Martin 2018; Ibata, Malhan et al. 2018; Ibata, Malhan & Martin 2019; Malhan et al. 2019a, Malhan et al. 2019b; Ibata et al. 2019; Ibata et al. 2020a; Ibata et al. 2020b; Ibata et al. 2021; Malhan et al. 2021)

Input (Gaia data)

- > 2D positions (RA,Dec.)
- > parallaxes (+unc)
- > 2D proper motions (+unc)
- > Photometry (G, G_{BP}, G_{RP}+unc)

Processing (automated)

- > Integrates and samples orbits using input Gaia information
 > Stars with more friends = "stream stars"
 0 or less friends = "not stream stars"
- Accounts for background
- $ln\mathcal{L} = \sum_{data} ln \left[\eta \mathcal{P}_{stream}(\theta) + (1 \eta) \mathcal{P}_{cont} \right]$ Stream Model (using the Gaia data)

<u>Output</u> Gaia stars that have ``streamy'' characteristics

ℓ(dea

STREAMFINDER: Finding streams in the Gaia dataset

(Malhan & Ibata 2018; Malhan et al. 2018, Malhan, Ibata & Martin 2018; Ibata, Malhan et al. 2018; Ibata, Malhan & Martin 2019; Malhan et al. 2019a, Malhan et al. 2019b; Ibata et al. 2019; Ibata et al. 2020a; Ibata et al. 2020b; Ibata et al. 2021; Malhan et al. 2021)

LMS-1 stream detection by STREAMFINDER using Gaia EDR3

Gaia EDR3 processed with STREAMFINDER

- LMS-1 is detected as one of the most striking features in this map (+other known streams)
- LMS-1's width (Gaussian) ~750 pc, distance~20 kpc Low [Fe/H] +significant [Fe/H] dispersion+ large physical width => LMS-1 is a dwarf galaxy stream.

$$\begin{array}{l} [{\rm Fe/H}] = & -2.09 \pm 0.05 \\ \sigma_{\rm [Fe/H]} = & 0.42 \pm 0.04 \end{array}$$

[Fe/H] implies parent galaxy $M_* \sim 10^{5-6} M_{sun} (\sim Draco dwarf galaxy)$

LMS-1 is "wrapped" around the inner Galactic Halo > Off-stream features adjacent to LMS-1 (sub-1, sub-2, sub-3) > agglomeration of stars in the southern galactic sky

"LMS-1/Wukong" discovered by Yuan+2020/Naidu+2020.

Orbit of LMS-1

- Cross-match Gaia sources with the spectroscopic surveys to get the missing RV info.
- LMS-1's orbit (in McMillan2017 mass model)

>Eccentricity~0.2 (nearly circular)
>Lz= - 700 kpc kms-1(prograde)
> r-apo=16 kpc
> r-peri =10 kpc

Orbit of LMS-1

- Cross-match Gaia sources with the spectroscopic surveys to get the missing RV info.
- LMS-1's orbit (in McMillan2017 mass model)

>Eccentricity~0.2 (nearly circular)
>Lz= - 700 kpc kms-1(prograde)
> r-apo=16 kpc
> r-peri =10 kpc
Almost all the intact dwarf galaxies + dwarf galaxy streams:
>eccentricity>~0.7
>r-apo >35-40 kpc

LMS-1 surrounds the inner 20 kpc of the MW halo

• LMS-1's circular orbit: <u>Orbit</u> <u>circularization</u> of the massive system due to dynamical friction (Chandrasekhar 1943)

 LMS-1's low apocentre: LMS-1 accreted early (~8-10 Gyr ago) when MW was smaller in size (since MW grew "insideout")

Comparing the orbits of LMS-1 and globular clusters (NGC5024 and NGC5053)

Comparing properties of LMS-1 with the MW globular clusters and other streams in the dynamical (E, J) space

• Objects with similar Energy (E) and actions (J) are expected to have been accreted inside the same parent galaxy.

E-J space of the Milky Way [J represent the amplitude of the orbit along different directions in a given coordinate system. We use cylindrical coordinate system (J_R, J_phi, J_z)]

Comparing properties of LMS-1 with the MW globular clusters and other streams in the dynamical (E, J) space

- Objects with similar Energy (E) and actions (J) are expected to have been accreted inside the same parent galaxy.
- (E,J), and other orbital properties, of NGC 5024, NGC 5053, Pal 5 and the Indus stream are very similar to LMS-1. [although orbital pole of Pal5 is different]

Name	(J_R, J_ϕ, J_z)	Energy	$r_{\rm peri}$	$r_{\rm apo}$	$z_{\rm max}$	eccentricity	[Fe/H]
	$[\mathrm{kpc}\mathrm{km}\mathrm{s}^{-1}]$	$[\rm km^2 s^{-2}]$	[kpc]	[kpc]	[kpc]		[dex]
LMS-1 (simulation)	$(107^{+153}_{-66}, -635^{+273}_{-390}, 1907^{+1433}_{-852})$	$-130836^{+19187}_{-27298}$	$9.2^{+6.1}_{-3.3}$	$16.5^{+8.2}_{-6.7}$	$15.8^{+8.3}_{-6.5}$	$0.24_{-0.09}^{+0.11}$	-2.0 ± 0.5
NGC 5024	$(473^{+10}_{-10}, -688^{+10}_{-9}, 2048^{+23}_{-21})$	-124015^{+280}_{-299}	$8.4^{+0.1}_{-0.1}$	$21.9^{+0.1}_{-0.1}$	$21.1^{+0.1}_{-0.1}$	$0.44\substack{+0.01 \\ -0.01}$	-2.06 ± 0.13
NGC 5053	$(192^{+9}_{-9}, -625^{+9}_{-9}, 2103^{+22}_{-22})$	-130167^{+261}_{-264}	$9.5^{+0.2}_{-0.2}$	$17.6^{+0.0}_{-0.0}$	$17.1^{+0.0}_{-0.0}$	$0.3^{+0.01}_{-0.01}$	-2.26 ± 0.10
Pal 5	$(193^{+17}_{-17}, -1052^{+24}_{-26}, 1634^{+37}_{-33})$	-130902^{+590}_{-537}	$9.3^{+0.3}_{-0.3}$	$17.4^{+0.0}_{-0.0}$	$15.9^{+0.0}_{-0.0}$	$0.3\substack{+0.02 \\ -0.01}$	-1.56 ± 0.1
Indus	$(58^{+58}_{-36}, -996^{+144}_{-123}, 2095^{+171}_{-178})$	-127649^{+5352}_{-5778}	$12.1^{+0.5}_{-0.6}$	$16.7^{+2.8}_{-2.6}$	$15.8^{+2.6}_{-2.3}$	$0.16\substack{+0.05 \\ -0.06}$	-2

Comparing properties of LMS-1 with the MW globular clusters and other streams in the dynamical (E, J) space + [Fe/H] + stellar population

- Objects with similar Energy (E) and actions (J) are expected to have been accreted inside the same parent galaxy.
- (E,J), and other orbital properties, of NGC 5024, NGC 5053, Pal 5 and the Indus stream are very similar to LMS-1. [although orbital pole of Pal5 is different]
- NGC 5024, NGC 5053, Indus have very similar [Fe/H] and CMDs as LMS-1. [for Pal5 it is slightly different]
- NGC 5024, NGC 5053, Pal 5* and Indus were accreted inside LMS-1's parent galaxy

Analyses of the dynamical old+new streams = Knowledge of the 'chronological' formation history of the MW Halo

1) <u>Sagittarius</u> (*i*=76°): >Spans <u>outer Galactic Halo</u> (15-100 kpc) <u>Dynamically-young</u>, recently accreted (~3-6 Gyr ago) >[Fe/H]~ -0.5 to -2.5 >8-10 GCs to the MW

2) <u>Cetus</u> (*i*=60°):
>Spans <u>intermediate Galactic Halo</u> (24-36 kpc)
>[Fe/H]~ −2
>1 GC to the MW (NGC 5824)

3) LMS-1 (*i*=75°):
>Spans inner Galactic halo (10-20 kpc)
Dynamically-old, early accreted (~8-10 Gyrs ago)
>[Fe/H]~ −2.1
> 2-3 GCs + 1 stream to the MW

<u>Chronological perspective:</u> Did LMS-1 accrete early (inner halo), then Cetus (intermediate halo) and finally Sagittarius (outer halo)?

What are the 3 polar dwarf galaxy streams telling us?

How common are such polar dwarf galaxy streams in MW-mass galaxies as per cosmological simulations?

If common Are polar streams the major source of stellar population in the halos of MW-mass galaxies? If uncommon Is our MW galaxy special?

(connected to the VPOS phenomenon? cf. works by M.Pawlowski)

Summary

- Stellar streams provide direct evidence of the hierarchical formation of the Milky Way.
- LMS-1 is an interesting stellar stream:
 unique orbit = polar, low "ecc.", low "r_apo"
 possibly accreted very early (>~8-10 Gyrs ago)
 M_{halo} ~10⁹⁻¹⁰ M_{sun} (M_{star} ~10⁵⁻⁶ M_{sun})
 evidence that LMS-1 is completely wrapped around the inner 20 kpc of the Milky Way
 brought in NGC 5024, NGC 5053, Pal 5* and Indus

• LMS-1 is an important fossil remnant of the early formation of our Galaxy !!

Thank you for your attention:) Khyati Malhan MPIA, Heidelberg