CONSTRAINING DARK MATTER WITH STRONG GRAVITATIONAL LENSING

Giulia Despali ZAH/ITA - Uni Heidelberg

$$P_{WDM}(k) = T^{2}P_{CDM}(k)$$

$$\frac{n_{WDM}}{n_{CDM}} = (1 + \gamma M_{hm}M^{-1})^{\beta}$$

$$\int_{10^{-1}}^{10^{-2}} \int_{0.10^{-1}}^{0^{-1}} \int_{0.10^{-$$

(2/L)

the dark matter model shapes the formation of structures in the universe

DM particles interact with each other and scatter

small object and the shape of density peaks are affected

Warm Dark Matter:

- thermal relics
- sterile neutrinos
- m~ keV

(Garrison-Kimmel et al 2014) "too big to fail" and "missing satellites" problems

small-scale perturbations are destroyed

lighter and with higher

velocities than CDM

explain DM distribution

WDM & SIDM

INTRODUCTION

WDM & SIDM

INTRODUCTION

subhalo counts from sterile neutrino WDM
 subhalo profiles and distribution

> impact of SIDM on the main halo propertie> different distribution of Einstein rings?

STRONG LENSING

INTRODUCTION

- the shape of the image is heavily affected by the lensing
- <u>small</u> angular separation between the source and the lens position, i.e. almost aligned
- occurs in the central regions of galaxies and galaxy clusters where the density is "critical"
- multiple images of background sources, such as bright QSO
- extended sources may be heavily distorted in gravitational arcs

STRONG LENSING & DM

INTRODUCTION

OBSERVATIONAL TECHNIQUE

OBSERVATIONAL TECHNIQUE

OBSERVATIONAL TECHNIQUE

GRAVITATIONAL IMAGING

OBSERVA

(Vegetti et al. 2012)

DENSITY CORRECTION

SIRUNG LENSING AS A DARK MATTER PROBE

COSMOLOGICAL BOXES

ILLUSTRIS

(Vogelsberger et al 2014)

(Genel et al. 2014, Sijacki et al. 2015, Pillepich et al. 2014, Nelson et al. 2015, Zhu et al. 2016, etc) very similar, but with different baryonic physics

SIMULATIONS

EAGLE

(Schaye et al 2015)

(Crain et al. 2014, Schaller et al. 2014 - 2015, Trayford et al. 2014 - 2015, Velliscig et al. 2015, etc)

ZOOM-IN SIMULATIONS

EXPECTED NUMBER OF PERTURBERS

(Despali et al. 2018, Li et al. 2017) SIMULATIONS

$$\frac{n_{WDM}}{n_{CDM}} = (1 + \gamma M_{hm} M^{-1})^{\beta}$$

$$N_{LOS} = \int_0^{z_S} \int_{M_{LOW}(z)}^{M_{max}} n(m, z) dm \frac{dV}{dz} dz$$

EXPECTED NUMBER OF PERTURBERS

(Despali et al. 2018, Li et al. 2017) SIMULATIONS

$$\frac{n_{WDM}}{n_{CDM}} = (1 + \gamma M_{hm} M^{-1})^{\beta}$$

$$N_{LOS} = \int_0^{z_S} \int_{M_{LOW}(z)}^{M_{max}} n(m, z) dm \frac{dV}{dz} dz$$

EXPECTED NUMBER OF PERTURBERS

(Despali et al. 2018)

SIMULATIONS

NUMBER OF DETECTABLE HALOES: OBSERVATIONS

CURRENT CONSTRAINTS ON WDM

MOCK DATA FOR ACCURATE PREDICTIONS

QUESTION 2:

what is the best observational strategy

to achieve this goal?

QUESTION 3:

what lens/source properties can

influence detections?

(Despali et al. 2021)

VARYING SIGNAL-TO-NOISE RATIO

the number of predicted detections linearly increases with SNR

(Despali et al. 2021)

VARYING SIGNAL-TO-NOISE RATIO

VARYING ANGULAR RESOLUTION

VARYING SOURCE PROPERTIES

(Despali et al. 2021)

TESTING COLD DARK MATTER

RADIO INTERFEROMETRY

- highest angular resolution imaging of extended gravitational arcs from a gravitational lens
- we can measure astrometric anomalies of the order of
 <u>1mas</u>
- price to pay: huge data and more complex analysis

Powell et al 2022. in prep

RADIO INTERFEROMETRY

Powell et al 2022. in prep

RADIO INTERFEROMETRY

Vegetti et al. in prep

(Despali et al. 2019)

- 10 ETG-analogues selected from the Illustris simulation
- resimulated with SIDM + baryons

depending on the SIDM cross-section, DM particles scatter in high-density regions

Vogelsberger et al. 2014

> the self-interaction influences the main halo profile

> in the presence of baryons things are more
complicated (Sameie+18, Robertson+18)

> the self-interaction influences the main halo profile

> in the presence of baryons things are more complicated (Sameie+18, Robertson+18)

- > the self-interaction influences the main halo profile
- > in the presence of baryons things are more
 complicated (Sameie+18, Robertson+18)

Mastromarino et al. in prep -> extension to a bigger box

SUMMARY

