PULSAR WIND NEBULAE: A CLASS OF EXTRAORDINARY COSMIC ACCELERATORS

Elena Amato

INAF- Osservatorio Astrofisico di Arcetri Firenze - Italy

PULSAR WIND NEBULAE

SNRs WITH

CENTER FILLED MORPHOLOGY BROAD NON THERMAL SPECTRUM FLAT RADIO SPECTRUM $F_{\nu} \propto \nu^{-\alpha}, \quad \alpha < 0.5$

Multi-wavelength emission and size shrinkage

Jet-torus morphology in X-rays

Crab Nebula (composite)

G21.5-0.9 (Chandra)

3C58 (Chandra)

THE CRAB NEBULA

BROAD BAND NON-THERMAL SPECTRUM

synchrotron radiation by relativistic particles in the nebular B field Inverse Compton scattering with local photon field

PARTICLES AND FIELD FROM ROTATIONAL ENERGY LOST BY PULSAR

PSR IS A ROTATING MAGNET THAT SLOWS DOWN DUE TO E.M. TORQUE [Pacini 1969]

WHY PWNE ARE INTERESTING

$L_{\text{radio}} \lesssim 10^{-10} \dot{E}_{\text{PSR}}, \quad L_{\gamma} \lesssim 10^{-2} \dot{E}_{\text{PSR}}, \quad L_{\text{PWN}} \ge 0.1 \dot{E}_{\text{PSR}}$

PLASMA PHYSICS:

PULSAR PHYSICS:

• CLOSEST AND BEST STUDIED RELATIVISTIC PLASMAS • PARTICLE ACCELERATION AT THE MOST RELATIVISTIC SHOCKS IN NATURE ($10^4 < \Gamma < 10^8$)

COSMIC RAY PHYSICS:

ONLY SOURCES WITH DIRECT EVIDENCE OF PeV PARTICLES
LIKELY MAIN CONTRIBUTORS OF CR POSITRONS

GAMMA-RAY ASTROPHYSICS:

MOST NUMEROUS CLASS OF GALACTIC SOURCES

- EXTENDED TeV HALOES
- LEPTONIC (AT LEAST) PEVATRONS

BASIC PICTURE FOR YOUNG SYSTEMS

 $= P_{PWN} = \frac{\dot{E} t}{4\pi R_N^3}$ $\frac{\dot{E}}{4\pi cR_{TS}^2}$ $R_{TS} = \left(\frac{v_N}{c}\right)$

5

 R_N

BASIC PICTURE FOR YOUNG SYSTEMS

$$R_{TS} = \left(\frac{v_N}{c}\right)^{1/2} R_N$$

DISSIPATION AND PARTICLE ACCELERATION AT TS

Adapted from Kennel & Coroniti 1984 [Del Zanna & Olmi 2017]

PWN EVOLUTION

SNR EXPANSION SLOWS DOWN + LARGE FRACTION OF ALL THE PULSARS BORN WITH HIGH KICK VELOCITY

COMPRESSED PWN OFFSET PW

REVERBERATION PHASE

RELIC NEBULAE

PSR MAY CROSS RS DURING COMPRESSION AND LEAVE A RELIC

EVOLVED PWNE

BOW SHOCK NEBULAE

B_{NEB} ≈100 μG

N(E)

ONE ZONE MODELS

[Pacini & Salvati 1973, EA+ 2000, Bucciantini+ 2011....] (also Fraschetti & Pohl 2017 for log-parabola injection)

EXTRAORDINARY ACCELERATOR!

 $L_{NEB} \approx 30 \% \dot{E}$

OPEN QUESTIONS

WHAT WE KNOW:

 \bullet most efficient accelerators in nature $\epsilon_{\rm acc} \lesssim 30\,\%$

• ENERGY FLUX THAT LEAVES THE PSR

$$\dot{E} = \kappa \dot{N}_{GJ} m_e \Gamma c^2 \left(1 + \frac{m_i}{\kappa m_e} \right) (1 + \sigma)$$
$$\sigma = \frac{B^2}{4\pi n_+ m_e c^2 \Gamma^2}$$

WE DO NOT KNOW:

- WHAT THE ACCELERATION MECHANISM(S) IS (ARE)

POSSIBILITIES DEPEND ON WIND COMPOSITION (IONS? κ?) WIND MAGNETIZATION (σ?)

- HOW PARTICLES EVENTUALLY ESCAPE

IN PRINCIPLE BOTH DEPEND ON LOCATION

Olmi+14

Pavlov+ 01

[Komissarov & Lyubarsky 03,04; Del Zanna+ 04,06; Bogovalov+ 05;Camus+ 09; Volpi+ 08; Olmi+ 14,15,16;Porth+ 13,14] 13

CONSTRAINTS ON ACCELERATION MECHANISMS

HADRONS IN CRAB?

 $Q_p(E) \propto \delta(E - m_p c^2 \Gamma)$

(EA & Arons 06; EA, Guetta, Blasi 03)

PINNE AS PEVATRONS

GALACTIC PEVATRONS

12 SOURCES DETECTED BY LHAASO ABOVE 100 TeV

Table 1 | UHE γ -ray sources

Source name	RA (°)	dec. (°)	Significance above 100 TeV ($\times \sigma$)	E _{max} (PeV)	Flux at 100 TeV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 -0.10 ^{+0.16}	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

Cao+ 2021

PeV PROTONS OR ELECTRONS?

THE CRAB NEBULA IS THE ONLY ESTABLISHED PEVATRON IN THE GALAXY

ALL SOURCES HAVE A PSR IN THE FIELD

MAXIMUM ENERGY IN A PWN

IN YOUNG ENERGETIC SYSTEMS ACCELERATION IS LOSS LIMITED

STRICT LIMIT FROM THE PSR POTENTIAL DROP $\Phi_{PSR} = \sqrt{\dot{E}/c}$

$$E_{max,abs} = e\xi_E B_{TS} R_{TS}$$

$$\frac{B_{TS}^2}{4\pi} = \xi_B \frac{\dot{E}}{4\pi R_{TS}^2 c}$$

$$E_{max,abs} = e\xi_E \xi_B^{1/2} \sqrt{\dot{E}/c} \approx 1.8 \ PeV \ \xi_E \ \xi_B^{1/2} \ \dot{E}_{36}^{1/2}$$

LHAASO PEVATRONS AND PWNE

MAXIMUM ELECTRON ENERGY AS A FUNCTION OF PSR POTENTIAL DROP AND LHAASO SOURCES

MORE CONSTRAINTS FROM SIZE OF THE EMISSION [De Ona Wilhelmi+ in prep]

EVOLVED SYSTEMS AND PARTICLE ESCAPE

OBSERVATIONS: JETS AND HALOES

[Posselt+ 2017]

Geminga ο Extended TeV halo

[Abeysekara+ 2017]

Lighthouse nebula [Pavan+ 2016]

Guitar nebula [Cordes+ 1993, Wong+ 2003]

G327 [Temim+ 2009]

PSR J1509-5850 [Klinger+ 2016]

THE CR POSITRON EXCESS

BOW SHOCK PWNe EARLY SUGGESTED [Blasi & EA 11] AS BEST CANDIDATES TO EXPLAIN THE EXCESS

ALL LEPTON SPECTRUM

Evoli+ 21,22

BS-PWNe INJECT $0.1\dot{E}$ AS A BROKEN POWER-LAW OF e⁺-e⁻ : $E_B \approx 500 {\rm GeV}$

INTERPRETATION: JETS AND HALOES

[Cordes+ 1993, Wong+ 2003]

JETS CONSISTENT WITH SYNCHROTRON EMISSION OF PARTICLES WITH $E \approx e \Phi_{PSR}$ IN A FEW X 10µG MAGNETIC FIELD [Bandiera 2008]

HALOS CONSISTENT WITH ICS EMISSION OF PARTICLES WITH $E \approx e \Phi_{PSR}$ IN A $\approx \mu G$ MAGNETIC FIELD AND $D \approx 10^{-2} D_{gal}$ [Abeysekara+ 2017, Lopez-Coto & Giacinti 2018, Lopez-Coto + 2021]

PARTICLE ESCAPE FROM BOW SHOCK PWNE

HIGH ENERGY PARTICLES INJECTED CLOSE TO THE POLAR AXIS STREAM OUT FROM RECONNECTION POINT AND FORM JETS IN THE ISM B-FIELD

Olmi & Bucciantini 2019b

ENERGY DEPENDENCE OF THE ESCAPE

SUMMARY AND CONCLUSIONS

- HUGE PROGRESS IN OUR UNDERSTANDING OF PWNe FROM MULTI-D MHD DYNAMICS AND RADIATION MODELLING
- PARTICLE ACCELERATION MECHANISM PROGRESSIVELY BETTER CONSTRAINED BUT STILL UNCLEAR

IN THE MEANTIME PWNe KEEP SURPRISING US AS EXTRAORDINARY ACCELERATORS:
 THE CRAB NEBULA IS THE ONLY ASSESSED LEPTONIC PEVATRON SO FAR

- ALSO A HADRONIC PEVATRON?
- LHAASO SUGGESTS MORE PEVATRON PWNe
- EVOLVED SYSTEMS SEEM TO ACCELERATE PARTICLES TO FULL POTENTIAL DROP
- PWNe AS CR SOURCES:
 - PWNe STILL THE MOST LIKELY CR POSITRON SOURCES ABOVE ~30 GeV
 - THEIR SPECTRUM ALSO NATURALLY ACCOUNTS FOR BREAK IN CR ALL-LEPTON SPECTRUM
- PWNe AND CR TRANSPORT
 - STILL UNCLEAR HOW WIDESPREAD TeV HALOES SHOULD BE
 - ISOTROPIC PARTICLE ESCAPE ONLY AT THE HIGHEST ENERGIES
 - ESCAPING PARTICLES CARRY ELECTRIC CURRENT THAT MAY AMPLIFY B-TURBULENCE

