Hunting for dark matter in the early Universe

Yacine Ali-Haïmoud (NYU)

INAF-OAS joint Astrophysics colloquium

April 14, 2022

Dark matter: executive introduction

density[dark matter]

density [standard matter]

 $\approx 5.36 \pm 0.05$ (Planck 2018)

Dark matter (DM) candidates

• A new particle?

• A whole family of them?

- Primordial black holes (PBHs)?
- All of the above? None of the above?

CMB observables

- I. Brief review of CMB spectral distortion physics
- II. Testing particle-DM scattering with spectral distortions
- III. Brief review of CMB anisotropy physics
- IV. Constraining accreting Primordial Black Holes with CMB anisotropies

Status of CMB frequency spectrum observations

COBE-FIRAS limits on spectral distortions (Fixsen et al. 1996)

$$|\Delta I_{\nu}|/I_{\nu} \lesssim 10^{-4}$$

 $|y| \le 1.5 \times 10^{-5}, \quad |\mu| \le 9 \times 10^{-5}$

Zeldovich & Sunyaev 1969, Hu & Silk 1993, Chluba & Sunyaev 2012

- At *z* ≥ **2e6**: photons are easily created and destroyed, and thermalized
 - ⇒ injection of energy into the photon-baryon plasma at z ≥ 2e6 *does not distort* the CMB **blackbody spectrum** (it can only change its overall temperature)

$$I_{\nu} = \frac{2h\nu^3}{e^{h\nu/T} - 1}$$

Zeldovich & Sunyaev 1969, Hu & Silk 1993, Chluba & Sunyaev 2012

- At **6e4** $\leq z \leq$ **2e6**: photons *no longer* easily created and destroyed, but their **energy is efficiently changed** by Thomson scattering with free electrons.
 - ⇒ Photon spectrum reaches a Bose-Einstein distribution, regardless of the energy injection process.

$$I_{\nu} = \frac{2h\nu^3}{e^{h\nu/T + \mu} - 1}$$
$$\mu \approx 1.4 \int_{6e4 \le z \le 2e6} dt \ \frac{\dot{\rho}_{\text{inj}}}{\rho_{\gamma}}$$

Zeldovich & Sunyaev 1969, Hu & Silk 1993, Chluba & Sunyaev 2012

- At $z \leq 6e4$: both photon number and energy no longer efficiently change.
- If energy is injected by heating baryons, and transferred to CMB by Thomson scattering, Compton-y (SZ) distortion

$$I_{\nu} = \frac{2h\nu^{3}}{e^{h\nu/T} - 1} + y Y_{SZ}(h\nu/T) \qquad y \approx \frac{1}{4} \int_{z \le 6e4} dt \ \frac{\dot{\rho}_{inj}}{\rho_{\gamma}}$$

• In general, non-universal distortion shape, depending on energy injection channel(s) [e.g. direct injection of photons with narrow/broad spectrum, etc...]

Zeldovich & Sunyaev 1969, Hu & Silk 1993, Chluba & Sunyaev 2012

Bottom line:

FIRAS limits:

 $|\Delta I_{\nu}|/I_{\nu} \lesssim 10^{-4}$

If DM is a **fundamental/composite particle** χ , could it **interact** feebly with "visible" matter?

$$\chi \overline{\chi} \to \gamma \gamma, e^+ e^-, q \overline{q}, \dots$$
 annihilations
 $\chi \to \gamma \gamma, e^+ e^-, q \overline{q}, \dots$ decays

If DM is a **fundamental/composite particle** χ , could it **interact** feebly with "visible" matter?

CMB spectral distortions from DM scattering

YAH, Chluba & Kamionkowski, PRL 2015

Suppose DM is non-relativistic, and scatters with $\gamma/e/p$ $n_b \langle \sigma v \rangle \propto (1+z)^{3+1/2}$ (for constant σ) Scattering rate: $H(z) \propto (1+z)^2$ (radiation domination) Expansion rate: $\frac{n_b \langle \sigma v \rangle}{H} = \left(\frac{1+z}{1+z_{\text{doc}}}\right)^{3/2}$ Tcmb $\propto (1 + z)$ $z_{\rm dec}$

While $z > z_{dec}$, the photon-baryon plasma constantly heats up DM to keep T_{χ} warmer than adiabatic evolution.

=> While $z > z_{dec}$, the DM constantly extracts heat from the photon-baryon plasma

$$\dot{\rho}_{\text{inj}} = -\frac{3}{2} n_{\chi} \left(\dot{T}_{\chi} - \dot{T}_{\chi} \big|_{\text{ad}} \right) \qquad \dot{T}_{\chi}|_{\text{ad}} = -2HT_{\chi}$$
$$\dot{T}_{\chi} \approx \begin{cases} -HT_{\chi}, & z > z_{\text{dec}} \\ \dot{T}_{\chi}|_{\text{ad}}, & z < z_{\text{dec}} \end{cases}$$

$$\Rightarrow \dot{\rho}_{\rm inj} \approx \begin{cases} -\frac{3}{2}n_{\chi}HT, & z > z_{\rm dec} \\ 0 & z < z_{\rm dec} \end{cases} \begin{array}{l} \text{Instantaneous decoupling} \\ \text{approximation} \end{cases}$$

Motivation for instantaneous-decoupling approximation:

- If χ - χ scattering rate >> H, DM has Maxwell-Boltzmann velocity distribution => only need to solve for T_{χ}
- But in general, one needs to follow the full DM velocity distribution $f_{\chi}(v)$.

=> lacking a full treatment at the time, made a simple approximation based on thermal decoupling redshift.

=> Maxwell-Boltzmann approximation is accurate within *O*(1) for the heat-exchange rate

=> To estimate spectral distortion to *O*(unity) accuracy, solve for DM temperature evolution, then compute heat-exchange rate

$$a^{-2}\frac{d}{dt}(a^2T_{\chi}) = \Gamma_{\text{tot}}(T_{\gamma} - T_{\chi}),$$
$$\Gamma_{\text{tot}} \equiv \sum_{s=\gamma,e,p,\text{He}} \Gamma_{\chi s}.$$
$$\dot{\rho}_{\text{inj}} = -\frac{3}{2}n_{\chi} \ a^{-2}\frac{d}{dt}(a^2T_{\chi})$$

Instantaneous-decoupling approximation can be very inaccurate due to residual heat exchange after *z*_{dec}

YAH, arXiv:2101.04070

DM with an electric or magnetic dipole moment

$$\alpha_E \equiv \frac{\mathcal{D}m_{\chi}}{e}, \qquad \alpha_E$$

$$\alpha_M \equiv \frac{\mathcal{M}m_{\chi}}{e}$$

$$\sigma_{\chi\chi\to\gamma\gamma} v = \frac{4\pi}{m_{\chi}^2} \alpha^2 \alpha_{\chi}^4$$

annihilations into leptonsantileptons/ quarks-antiquarks

scattering with photons

$$\sigma_{\chi\chi\to f\bar{f}} v \approx N_{c,f} \frac{\pi}{3m_{\chi}^2} \alpha^2 \alpha_E^2 v^2$$
$$\sigma_{\chi\chi\to f\bar{f}} v \approx N_{c,f} \frac{4\pi}{m_{\chi}^2} \alpha^2 \alpha_M^2,$$

$$\sigma_{\chi\gamma}(E_{\gamma}) = \frac{64\pi}{3m_{\chi}^2} \alpha^2 \alpha_{\chi}^4 \left(\frac{E_{\gamma}}{m_{\chi}}\right)^2$$

scattering with electrons/nuclei

$$\sigma_{\chi s}(v) = \frac{8\pi Z_s^2}{m_\chi^2} \frac{\alpha^2 \alpha_E^2}{v^2},$$
$$\sigma_{\chi s}(v) = \frac{8\pi Z_s^2}{m_\chi^2} R_{\chi s} \alpha^2 \alpha_M^2$$

https://cosmo.nyu.edu/yacine/dmdist/dmdist.html

DMDIST

A code to calculate CMB spectral distortions from dark matter interactions

DMDIST computes the CMB μ -distortion resulting from interactions of non-relativistic dark matter particles with Standard Model particles, including elastic scattering and annihilations.

Please cite the companion paper when using this code as part of any published work: Ali-Haïmoud, arXiv e-prints (January 2021) Please consider also citing the following paper, presenting the original idea: Ali-Haïmoud, Chluba and Kaminkowski, PRL 115, 071304 (2015) (arXiv:1506.04745)

Note that this code is provided "as is" and no guarantees are given regarding its accuracy.

Python source code: <u>DMDIST</u>

- Example use: iPython <u>notebook</u> (plus external data) used to make the figures in the companion paper, and the output files below.
- DMDIST output files for spectral-distortion upper limits and sensitivity forecasts for DM scattering with a single scatterer.

Columns are DM mass in MeV and "coupling" = σ_* in cm², for μ = 9e-5 (FIRAS limit), 1e-7, 1e-8, 1e-9 (see first 2 lines in file for description):

proton_minus2.txt: DM-proto	on scattering with cross section $\sigma_{\chi p}(v) = \sigma_* v^{-2}$
proton 0.txt:	$\dots \sigma_{\chi p}(v) = \sigma_* v^0$
proton 2.txt:	$\dots \dots \sigma_{\chi p}(v) = \sigma_* v^2$
proton 4.txt:	$\dots \sigma_{\chi p}(v) = \sigma_* v^4$
proton 6.txt:	$\dots \dots \sigma_{\chi p}(v) = \sigma_* v^6$
electron minus2.txt: DM-ele	ctron scattering with cross section $\sigma_{\chi e}(v) = \sigma_* v^{-2}$
electron 0.txt:	$\dots \sigma_{\chi e}(v) = \sigma_* v^0$
electron 2.txt:	$\dots \dots \sigma_{\chi e}(v) = \sigma_* v^2$
electron 4.txt:	$\dots \sigma_{\chi e}(v) = \sigma_* v^4$
electron 6.txt:	$\dots \sigma_{\chi e}(v) = \sigma_* v^6$
photon_0.txt: DM-photon sca	attering with cross section $\sigma_{\chi\gamma}(E_{\gamma}) = \sigma_*$
photon 2.txt:	$\dots \sigma_{\chi\gamma}(E_{\gamma}) = \sigma_*(E_{\gamma}/m_{\chi})^2$
photon_4.txt:	$\dots \sigma_{\chi\gamma}(E_{\gamma}) = \sigma_*(E_{\gamma}/m_{\chi})^4$

III. CMB anisotropy physics

In first ~400,000 yrs Thomson scattering rate >> Hubble rate.

Photons and baryons are tightly coupled and undergo acoustic oscillations.

last scattering epoch

 $\frac{\text{dark matter}}{\text{baryons}} \approx 5.36 \pm 0.05 \text{ (Planck 2018)}$

 ℓ

CMB anisotropies are *very* sensitive to the ionization history

CMB anisotropies are *very* sensitive to the ionization history

CMB anisotropies are *very* sensitive to the ionization history

State-of-the-art recombination codes:HYRECYAH & Hirata 2010, 2011COSMORECChluba & Thomas 2011

compute x_e [standard] with accuracy ~few parts in 1e4, in ~1 second / cosmology

HYREC-2 Lee & YAH 2020

accuracy ~few parts in 1e4, in ~1 millisecond / cosmology

IV. Probing accreting PBHs with CMB anisotropies

PBHs are not only a DM candidate, but also a window into small-scale initial conditions

Status of limits on *f*_{PBH} (fraction of dark matter in PBHs) for Dirac-delta PBH mass function

Limits to PBH abundance much below 100% of DM could constrain the tail of an extended mass function

Zooming in on the 1-1000 solar-mass range

Suppose part of the dark matter is made of black holes

they accrete gas in the early Universe

M : Bondi-Hoyle-Lyttleton + Compton drag and cooling

part of the accreted energy is re-radiated

 $L = \epsilon \dot{M} c^2$

Free-free emission from ionized accreted gas

Part of the injected energy is deposited (with some delay) in the form of extra heating and ionizations

deposited energy ionizes hydrogen beyond normal

and impacts CMB temperature and polarization power spectra

Main result: CMB power spectra imply that PBHs cannot be all the dark matter for black hole mass $\geq 100 \text{ M}_{sun}$

YAH & Kamionkowski 2017. See also: Miller 2000, Ricotti et al. 2008, Poulin et al. 2017

Work in progress: non-Gaussian signatures of accreting PBHs

• PBH accretion rate and luminosity depends on the local gas (relative) velocity

$$\dot{M}_{\rm Bondi} \sim \rho_b \frac{(GM)^2}{(c_s^2 + v_{\rm rel}^2)^3} \qquad L_{\rm free-free} \propto \dot{M}^2$$

• Baryons and dark matter have supersonic relative velocities at z~1000, fluctuating on ~10² Mpc (Tseliakhovich & Hirata 2010)

$v_{\rm cb}$ [km/s]

figure courtesy of Julián Muñoz

0.8

0.6

0.4

0.2

0

figure courtesy of Julián Muñoz

figure courtesy of Julián Muñoz

=> Energy injection from accreting PBHs is O(1) inhomogeneous => Perturbations to standard recombination could be *up to O(1)* inhomogeneous $x_e(t, \vec{x}) = x_e^{\text{std}}(t) + \Delta x_e(t, \vec{x})$ $\Delta x_e(t, \vec{x}) = \langle \Delta x_e \rangle(t) + \delta x_e(t, \vec{x})$ $\delta x_e(t, \vec{x}) \lesssim \langle \Delta x_e \rangle(t)$

For *f*_{PBH} saturating CMB power spectra limits:

$$\frac{\langle \Delta x_e \rangle(t)}{x_e^{\text{std}}(t)} \sim 1 \%$$

Corresponds to (<u>up to</u>) O(1%) spatial fluctuations in the ionization fraction

Spatial fluctuations in the ionization fraction lead to CMB non-Gaussianities

Standard linear perturbation produces $\delta x_e/x_e \sim 1e-4$ Generates a bispectrum with S/N ~ 0.5 for Planck (Creminelli & Zaldarriaga 2004, Senatore et al. 2009, Pettinari et al. 2014)

For f_{PBH} saturating CMB power spectra limits $\delta x_e/x_e \sim 1e-2$

=> Planck should be sensitive to $f_{PBH} \sim 1e2$ times smaller than current CMB power spectra limits

First question: do inhomogeneities in energy injection get washed out by finite propagation of injected photons?

Jensen & YAH, arXiv:2106.10266

Trey Jensen

Time and scale-dependent Green's function for energy deposition, computed with radiation transport simulations + new analytic results

Spatial fluctuations in ionization fraction are comparable to mean effect Ionization fluctuations peak at $k \sim 0.01-0.1/Mpc$, comparable to CMB anisotropy scales

Ongoing work: computation of the CMB trispectrum resulting from inhomogeneously-accreting PBHs.

Epilogue: PBH clustering

log[time (years)] = -0.1