

Thales A. Gutcke Hubble Fellow | Princeton

Dwarf galaxies on small scales in a cosmological context arXiv:2110.06233

Collaborators: Volker Springel, Thorsten Naab, Rüdiger Pakmor

First galaxies to form in the Universe

- Building blocks of all more massive galaxies
- Sensitive to small potential perturbations
- Extreme systems in terms of age, metallicity, size, luminosity, kinematics
- Become satellites to i.e. the Milky Way

How do they evolve?

What can we learn about cosmology and galaxy formation from them?

Flat dark matter profiles

Cosmological simulations?

Single SN

Avoid overcooling by resolving the SNe Mgas ~ 4Msun

27% of thermal energy is transformed to kinetic (Sedov solution)

Superbubbles at high z

z~8

Z~4

Beautiful ISM structure in response to clustered SN

the Lyra model

Cosmological LSS

Realistic merger history

Resolved IMF

Resolved GMCs

Individual variable SN

Doolictic (C.M

Suite of Lyra dwarfs

~109 M_{sun} halo mass 10⁶⁻⁷ M_{sun} stellar mass

Resolution: 4 M_{sun} AREPO gas cells

> Generally **great** agreement with observations!

Stellar size - magnitude

Photometric modeling reveals size and magnitude in line with classical MW dwarfs

classical dwarfs

ultra-faint dwarfs

Stellar kinematics

Rotation

Dispersion

Dispersion dominated

Properties are in line with dSph morphology

What happened at high redshift?

Gas density

Gas temperature

Gas metallicity

Phases of the ISM within 0.1 R_{vir}

10⁻⁴ 10⁻⁵

0.0

z6 10 4 10 10^{0} 10-1 ≥ 10-2 10⁻³ 10^{-4} 10-5 1.0 0.5 1.5 0.010 $10^{(}$ 10-²⁻¹⁰ کې 10⁻³ 10^{-4} 10-5 1.0 0.5 Q.Q 1.510 10^{0} 10-1 ·프 10⁻² 10⁻³

1.0

 $t \; [Gyr]$

0.5

1.5

2.0

2.0

2.0

Loading factors measured across R_{vir} surface

Prediction #1 IGM pollution Weak MgII absorption stays constant out to Z~7

Are dwarf galaxies responsible for the weak absorption at high-z in the IGM?

Chen+2017

IGM enrichment (MgII)

CV

Absorber size

MgII weak absorber number density

Models calibrated at z<2

Dwarf galaxies may be dominant polluter at high-z Prediction #2 Dwarf substructure

Dwarf subhalos look like ultra-faint dwarfs

Which halos do PopIII stars form in?

Three simple models introducing the first metals

Skinner+2020

Metals are everywhere from the beginning

M_{thres} = 10⁶ M_{sun} Metals are introduced in many small halos

 $M_{thres} = 10^7 M_{sun}$ Metals are introduced in a few large halos

Dwarf substructure counts

PopIII halo mass may be constrained by future observations of dwarf substructure (JWST/Rubin)

arviv.2110.06233

Take home message(s)

small scale baryonic physics and the cosmological context

- Dwarf galaxies may be dominant IGM polluter at high-z
- Dwarf subhalos look like LG ultrafaint dwarfs
- PopIII halo mass may be constrained by dwarf substructure counts

