OAS Bologna, April 7th 2022, Joint Astrophysical Colloquium

The ISM across cosmic times and how to disentangle its complexity

Livia Vallini Scuola Normale Superiore – Pisa

Key questions

What are the differences between the ISM properties in local vs. high-z galaxies?
What are the implications for the star formation across cosmic times?
What is the effect of feedback (from AGN/star formation) on the ISM?

Star formation

HII regions

HII regions

Giant Molecular Clouds

HII regions

Giant Molecular Clouds

SN feedback (turbulence/metal injection)

Giant Molecular Clouds

X-ray dominated regions

Giant Molecular Clouds

HII regions

AGN feedback

HII regions

Giant Molecular Clouds

For a recent review: Wolfire, Vallini, Chevance, ARAA, Vol 60, 2022

HII regions

X-ray dominated regions

Giant Molecular Clouds

The ISM: a complex environment as traced by ALMA and JWST

[OIII] 88µm, CIII]1909 Å

HII regions

X-ray dominated regions

CO lines

Giant Molecular Clouds

[CII] 158µm Photodissociation regions

Joint [OIII]-[CII] detections towards the Epoch of Reionization

Joint CIII]-[CII] detections towards the Epoch of Reionization

Zooming in on the ISM of the first galaxies

Zoom-in cosmological simulations Pallottini+17,19,22 Molecular gas Gas 0.5 kpc **Ionization field** 0.5 kpc 0.5 kpc 0 accented d o $\log \langle n/\mathrm{cm}^{-3} \rangle$ $\log \langle n_{\rm H2}/{\rm cm}^{-3} \rangle$ $\log \langle U \rangle$ -2 -2 Ó 3 -3 Ó -3 -1 -1

Sepp

Zooming in on the ISM of the first galaxies

Open questions: why such a high [OIII]/[CII] ratios?

The [OIII]/[CII] ratios are higher than the average value reported for local star forming galaxies

Open questions: why such a high [OIII]/[CII] ratios?

The [OIII]/[CII] ratios are higher than the average value reported for local star forming galaxies

The [CII] size is overall 2-3 times larger than the [OIII] one, this might influence the $L_{[OIII]/}L_{[CII]}$ ratio if we miss the [CII] extended component

Open questions: why such a low [CII] surface brightness?

The surface brightness of [CII] in high-z galaxies is systematically lower than what is observed in local galaxies with comparable SFR surface brightness

- For $\Sigma_{[OIII]}/\Sigma_{[CII]}$ different extension of the emitting regions are explicitly accounted for
- $\Sigma_{[OIII]}/\Sigma_{[CII]}$ ratios, and the Σ_{SFR} , are more closely related to the local ISM conditions

Pallottini+19, Vallini+21

Resolution of the simulation ~10 pc

- For $\Sigma_{[OIII]}/\Sigma_{[CII]}$ different extension of the emitting regions are explicitly accounted for
- $\Sigma_{[OIII]}/\Sigma_{[CII]}$ ratios, and the Σ_{SFR} , are more closely related to the local ISM conditions

Considering the beam smearing

100 pc

High $\Sigma_{[OIII]} \Sigma_{[CII]}$ ratios are not due to observational biases rather they reflect the conditions of the most extreme (and bright) ISM regions

 $\Sigma_{[CII]}(\mathbf{k}_{s}, \mathbf{n}, \mathbf{Z})$ Ferrara, LV+19

 $\Sigma_{CIII]_{1909A}}(k_{s,}n, Z)$ Vallini+20

 $\Sigma_{[OIII]}(k_{s,} n, Z)$ Vallini+21

 $\Sigma_{[CII]}(k_s, n, Z)$ Ferrara, LV+19 $k_s =$ "burstiness" parameter describing the deviation from the Kennicutt-Schimidt law

 $\Sigma_{CIII]_{1909A}}(k_{s,}n, Z)$ Vallini+20

 $\Sigma_{[OIII]}(k_{s}, n, Z)$ Vallini+21

 $\Sigma_{[CII]}(k_{s}, n, Z)$ Ferrara, LV+19 n = gas density

 $\Sigma_{CIII]_{1909A}}(k_{s,}n, Z)$ Vallini+20

 $\Sigma_{[OIII]}(k_{s,}n, Z)$ Vallini+21

 $\Sigma_{[CII]}(k_s, n, Z)$ Ferrara, LV+19 Z = gas metallicity

 $\Sigma_{CIII]_{1909A}}(k_{s,}n, Z)$ Vallini+20

 $\Sigma_{[OIII]}(k_{s,} n, Z)$ Vallini+21

For local relation $\Sigma_{[CII]}$ - Σ_{SFR} : De Looze+2014, Herrera-Camus+15 For details on the model see: Ferrara+19, Vallini+20

The effect of deviations from the Kennicutt-Schmidt relation

Starburst \rightarrow larger U \rightarrow higher ionized gas column density & low PDR column density \rightarrow Decrease $\Sigma_{[CII]}$

The effect of deviations from the Kennicutt-Schmidt relation

Starburst \rightarrow larger U \rightarrow higher ionized gas column density & low PDR column density \rightarrow Decrease $\Sigma_{[CII]}$

Starburst \rightarrow larger U \rightarrow higher ionized gas column density & low PDR column density \rightarrow Increase $\Sigma_{[OIII]}$

The effect of gas density

The effect of gas density

The effect of gas metallicity

The effect of gas metallicity

Disentangling the ISM complexity

Disentangling the ISM complexity

The code (**GLAM!** Galaxy Line Analyzer with MCMC) and Jupyter notebooks for running on any galaxy of interest is released at: <u>https://lvallini.github.io/MCMC_galaxyline_analyzer/</u>

Disentangling the ISM complexity

We find k_s ~10-100: [OIII]-[CII] emitters in the EoR are starburst galaxies with upwards deviation from the KS

This corresponds to **short depletion times**: $t_{dep} = 6 - 49 Myr$

Direct measure of the KS relation at high-z

The depletion time can be directly measured if we derive Σ_{gas} from the CO emission: $t_{dep} < 2.5-550$ Myr

This corresponds to **short depletion times**: $t_{dep} = 6 - 49 Myr$

Does the Kennicutt-Schmidt relation evolve?

Does the Kennicutt-Schmidt relation evolve?

Does the Kennicutt-Schmidt relation evolve?

Pallottini+22 z=6-7 SIMULATED GALAXIES

CO spectral line energy distribution

CO detections towards the Epoch of Reionization

GMC distribution

GMC distribution

GMC distribution

Key questions

What are the differences between the ISM properties in local vs. high-z galaxies?
What are the implications for the star formation across cosmic times?
What is the effect of feedback (from AGN/star formation) on the ISM?

A few answers

1. What are the differences between the ISM properties in local vs. high-z galaxies? High-z galaxies are overall denser, more turbulent, and compact. This affects the line emission, especially [CII] and CO from molecular clouds

A few answers

1. What are the differences between the ISM properties in local vs. high-z galaxies?

2. What are the implications for the star formation across cosmic times?

Some hints of a possible evolution of the Kennicutt-Schmidt relation. Galaxies are overall more bursty, thus [OIII]/[CII] ratios are higher

A few answers

1. What are the differences between the ISM properties in local vs. high-z galaxies?

2. What are the implications for the star formation across cosmic times?

3. What is the effect of feedback (from AGN/star formation) on the ISM? Possible effect of AGN in the excitation of CO needs to be further addressed if we want to trace directly the KS relation from the mid-J CO line emission

Thank you

